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Lipschitz graph domains

Definition

We call an open set Q C Rt an M-Lipschitz graph domain if, after possibly translating
and dilating Q, there exists a function r : S — R such that

Q= {r(h)0 : 6 € S}
where for all 8,7 € S?, we have

|r(6) — r(¥)] < M6 -,

2/46



Jones's Lipschitz decomposition result in R?

Theorem (Jones)

There is a constant M > 0 such that for any simply connected domain Q C R? with H*(0S) < co, there exists
a rectifiable curve T', (H*(I') < oo) such that

Q\r:GQ,-

Jj=1

where {€;}; is a collection of disjoint M-Lipschitz graph domains satisfying

i H(09;) < MH'(69)

=1
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Jones's Lipschitz decomposition result in R?

Theorem (Jones)

There is a constant M > 0 such that for any simply connected domain Q C R? with H*(0S) < co, there exists
a rectifiable curve T, (H'(I') < oo) such that

Q\r:DQ,-

j=1

where {Q;}; is a collection of disjoint M-Lipschitz graph domains satisfying

i H'(09)) < MH'(9Q)

j=1

Question

| A\

For Q CRY, d > 2, can we find geometric sufficient conditions on 9 for the existence of Jones-type Lipschitz
decompositions?
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|deas of proof of Jones's result

1. Apply the Riemann mapping theorem to get biholomorphic ¢ : D — Q.
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|deas of proof of Jones's result

1. Apply the Riemann mapping theorem to get biholomorphic ¢ : D — Q.

2. Partition I into Lipschitz graph domains {D;} such that ¢'|p, ~ constant.

D,

Dy

e |D;

oD
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|deas of proof of Jones's result

1. Apply the Riemann mapping theorem to get biholomorphic ¢ : D — Q.
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|deas of proof of Jones's result

1. Apply the Riemann mapping theorem to get biholomorphic ¢ : D — Q.
2. Partition D) into Lipschitz graph domains {D;} such that ¢'|p, ~ constant.
3. Define Q; = ¢(D;).

4. Zj'il H(0;) < MH(OQ) by complex analysis estimates using H1(0) < occ.

In higher dimensions

Apply this proof scheme in higher dimensions by replacing complex analysis with GMT
(a) Add 09 Reifenberg flat

(b) Riemann map — Reifenberg parameterization

(c) complex analysis estimates — Carleson packing estimates for a “corona decomposition”
of 9N
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(a) Reifenberg flat sets

Definition (Bilateral beta number)
For E C R" and B a ball, the d-bilateral beta number for E inside B is

1
bBY(B)= ——— inf dy(BNE,BnNP).
IBE( ) diam(B) P c}pplane H( neBN )
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(a) Reifenberg flat sets

Definition (Bilateral beta number)
For E C R" and B a ball, the d-bilateral beta number for E inside B is

1
bBY(B)= ——— inf dy(BNE,BnNP).
IBE( ) diam(B) P c}pplane H( neBN )

B = B(z,r)

‘ " bﬁ%(B) =infp 4—plane %max{dl, da}
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(a) Reifenberg flat sets

Definition
We say that a set E C R" is (¢, d)-Reifenberg flat if for all x € E and r > 0,

bBe(B(x,r)) <e.
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(a) Reifenberg flat sets

Definition
We say that a set E C R” is (¢, d)-Reifenberg flat if for all x € E and r > 0,

bﬂ,‘:i(B(x7 r)) <e.
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(a) Reifenberg flat sets

Definition
We say that a set E C R” is (¢, d)-Reifenberg flat if for all x € E and r > 0,

bBEe(B(x,r)) <e.

%

21/46



(b) Reifenberg parameterization

Theorem (Reifenberg topological disk theorem)

If E CR" is (e, d)-Reifenberg flat with 0 € E for small €, then 3g : R" — R" bi-Hélder which
maps a d-disk onto E N B(0,1). Specifically, g satisfies

Clx —y["TC < |g(x) — g(y)] < Clx — y|* €

and

ENB(0,1) = g(B9(0,1)).
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(b) Reifenberg parameterization

Theorem (Reifenberg topological disk theorem)
If E CR" is (e, d)-Reifenberg flat with 0 € E for small €, then 3g : R" — R" bi-Hélder which
maps a d-disk onto E N B(0,1). Specifically, g satisfies
CHx =y < [g(x) —g(y)l < Clx =y~
and

ENB(0,1) = g(B9(0,1)).

® G. David and T. Toro later gave an improved Reifenberg algorithm for “Reifenberg flat
sets with holes” which also gave a condition for g to be bi-Lipschitz in terms of an upper
bound on “accumulated wiggliness” over all scales at a given point.

23/46




(b) Reifenberg parameterization and the geometry of 0

® Given Reifenberg flat E, the Reifenberg construction produces a collection {¥4}4>0 of smooth
approximations to E on scale 27 used to construct g.

o /_A../"‘\A\
N \'\.,\/“‘\_A_
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(b) Reifenberg parameterization and the geometry of 0

® Reifenberg construction produces a collection {¥,}«>0 of smooth approximations to E on scale 2% used
to construct g.
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(b) Reifenberg parameterization and the geometry of 0

® Reifenberg construction produces a collection {¥}x>o of smooth approximations to E on scale 27 used
to construct g.

o, T
Nt N
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(b) Reifenberg parameterization and the geometry of 0

® Reifenberg construction produces a collection {¥,}«>o of smooth approximations to E on scale 27 used
to construct g.

N \\__A_f"‘\ﬁ_
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(b) Reifenberg parameterization and the geometry of 0

g(x, t) parameterizes smooth ¥; at "height” ~ t above 02 by interpolating between ¥'s

R? x {1}

R (1) \_/\_—_

Rdx{i} —/\//\_/_\
R? x {0} A/\/\/A/\/\_w/\/\
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(c) Reifenberg flat corona decompositions

Theorem (R. Schul, J. Azzam)

Let 3 be (¢, d)-Reifenberg flat. Then A(X N B(0,1)) = Jsc & S where for each S, for every x € Q € S,
(i) Z(Pq(s), Pq) < do (controlled tilting)
(i) Y rcqes Beont(Q)? < €0 (controlled wiggliness)

and
> HUQ(S)) Sepro0,0 HY(Z N B(0,1)) (1)
Se 7

\
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(c) Reifenberg flat corona decompositions

Theorem (R. Schul, J. Azzam)

Let 3 be (¢, d)-Reifenberg flat. Then A(X N B(0,1)) = Jsc & S where for each S, for every x € Q € S,
(i) Z(Pq(s), Pq) < do (controlled tilting)
(i) Y rcqes Beont(Q)? < €0 (controlled wiggliness)

and

> HUQ(S)) Seousod HU(EN B(0,1)) (1)
Se &

Proposition (K.)

H*! has a partition into Lipschitz graph domains {D;} such that Dg|p, = constant, and the family
{2} = {g(D;)} is a collection of Lipschitz graph domains satisfying

oo

> H(09nB(0,1) Sa Y H (Q(S)) Seo. MH (692N B(0,1)).

Jj=1 SeF
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(c) Reifenberg flat corona decompositions

Proposition (K.)
HY* has a partition into Lipschitz graph domains {D;} such that Dg|p; ~ constant, and the family
{Q;} = {g(D;)} is a collection of Lipschitz graph domains satisfying

oo

> U0 N B(0,1) Sa Y HUQS)) Seoind HI (92N B(0,1)).

j=1 SeF

Proposition produces a corona decomposition!
® controlled tilting = g("bottom” of Dj) is a graph

® controlled wiggliness = g(“bottom” of D;) has Lipschitz constant < €g
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RF Corona decomposition <=- disjoint Lipschitz graph
domains
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RF Corona decomposition <=- disjoint Lipschitz graph
domains

D,

Dy | D3
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RF Corona decomposition <=- disjoint Lipschitz graph
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Corona decomposition <= Lipschitz graph domains
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Jones's proof scheme with QGMT

To show that Q C RYT! when 9Q is (e, d)-Reifenberg flat+ has a local decomposition into
Lipschitz graph domains...
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Jones's proof scheme with QGMT

To show that Q C RYT! when 9Q is (e, d)-Reifenberg flat+ has a local decomposition into
Lipschitz graph domains...

1. Apply David-Toro Reifenberg to get bi-Lipschitz g : HIt! — Q

2. Partition HY"! into Lipschitz graph domains {D;} on which Dg = constant by following a
corona decomposition of 9.

3. Define Q; = ¢(D;)

4. Prove 3%, HI(0Q; N B(0,1)) < MH (92N B(0,1)) by using Carleson packing
estimates.
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Reifenberg flat + Jones function bound

For all M > 0, there is €(d, M) > 0 such that for any Q C RI*+1, if
1. 99 is (¢, d) Reifenberg flat,
2. > o Beont(@)% < M for all x € QN B(0,1),

then there exists a d-rectifiable set ¥ such that

QN B(0,1)\X = UQ

where Q; is M-Lipschitz and

i%d(anj N B(0,1))) < MH9 (02N B(0,1))
j=1
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No 32 sum bound
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No 32 sum bound

Theorem (K.)

There exist constants M(d),e(d) > 0 such that if 002 is (e, d)-Reifenberg flat, then there
exists a collection of M-Lipschitz graph domains {€;} such that
(a) 2, CQ

(b) QN B(0,1) € U2,
(c) 3C(d) > 0 such that Yx € RI*1, x € Q; for at most C j's
(d) 332, H(09Q; N B(0,1)) < MH (921 B(0,1))
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No 32 sum bound

Theorem (K.)

There exist constants M(d),e(d) > 0 such that if 002 is (e, d)-Reifenberg flat, then there
exists a collection of M-Lipschitz graph domains {€;} such that

(a) Q@
(b) QN B(0,1) € U2,

(c) 3C(d) > 0 such that Yx € RI*1, x € Q; for at most C j's
(d) 332, H(09Q; N B(0,1)) < MH (921 B(0,1))

A\

Suppose 02 is d-uniformly rectifiable. Then there exists M > 0 dependent on the uniform
rectifiability constants such that there exists a collection of M-Lipschitz graph domains {Q;}
such that (a), (b), (c) of the previous theorem hold, and

(d') Y272, 1995 N By, r)) < MHU(Q N B(y,r)) for all y € 921 B(0,1) and r > 0.

J
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