Lipschitz Decompositions of the Complements of Bilaterally Flat Sets

Jared Krandel

Department of Mathematics Stony Brook University

May 2, 2023

We call an open set $\Omega \subseteq \mathbb{R}^{d+1}$ an *M*-Lipschitz graph domain if, after possibly translating and dilating Ω , there exists a function $r : \mathbb{S}^d \to \mathbb{R}^+$ such that

$$\partial \Omega = \{ r(\theta) \theta : \theta \in \mathbb{S}^d \}$$

where for all $\theta, \psi \in \mathbb{S}^d$, we have

Theorem (Jones)

There is a constant M > 0 such that for any simply connected domain $\Omega \subseteq \mathbb{R}^2$ with $\mathcal{H}^1(\partial \Omega) < \infty$, there exists a rectifiable curve Γ , $(\mathcal{H}^1(\Gamma) < \infty)$ such that

$$\Omega \setminus \mathsf{\Gamma} = igcup_{j=1}^\infty \Omega_j$$

where $\{\Omega_j\}_j$ is a collection of disjoint M-Lipschitz graph domains satisfying

$$\sum_{j=1}^\infty \mathcal{H}^1(\partial\Omega_j) \leq M\mathcal{H}^1(\partial\Omega)$$

Jones's Lipschitz decomposition result in \mathbb{R}^2

Theorem (Jones)

There is a constant M > 0 such that for any simply connected domain $\Omega \subseteq \mathbb{R}^2$ with $\mathcal{H}^1(\partial \Omega) < \infty$, there exists a rectifiable curve Γ , $(\mathcal{H}^1(\Gamma) < \infty)$ such that

$$\Omega \setminus \mathsf{\Gamma} = igcup_{j=1}^\infty \Omega_j$$

where $\{\Omega_j\}_j$ is a collection of disjoint M-Lipschitz graph domains satisfying

$$\sum_{j=1}^\infty \mathcal{H}^1(\partial\Omega_j) \leq M\mathcal{H}^1(\partial\Omega)$$

Question

For $\Omega \subseteq \mathbb{R}^d$, d > 2, can we find geometric sufficient conditions on $\partial \Omega$ for the existence of Jones-type Lipschitz decompositions?

1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.
- 3. Define $\Omega_j = \varphi(D_j)$.

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

3. Define $\Omega_j = \varphi(D_j)$.

4. $\sum_{j=1}^{\infty} \mathcal{H}^1(\partial \Omega_j) \leq M \mathcal{H}^1(\partial \Omega)$ by complex analysis estimates using $\mathcal{H}^1(\partial \Omega) < \infty$.

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

3. Define $\Omega_j = \varphi(D_j)$.

4. $\sum_{j=1}^{\infty} \mathcal{H}^1(\partial \Omega_j) \leq M \mathcal{H}^1(\partial \Omega)$ by complex analysis estimates using $\mathcal{H}^1(\partial \Omega) < \infty$.

In higher dimensions

Apply this proof scheme in higher dimensions by replacing complex analysis with GMT

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

3. Define $\Omega_j = \varphi(D_j)$.

4. $\sum_{j=1}^{\infty} \mathcal{H}^1(\partial \Omega_j) \leq M \mathcal{H}^1(\partial \Omega)$ by complex analysis estimates using $\mathcal{H}^1(\partial \Omega) < \infty$.

In higher dimensions

Apply this proof scheme in higher dimensions by replacing complex analysis with GMT (a) Add $\partial\Omega$ Reifenberg flat

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

3. Define $\Omega_j = \varphi(D_j)$.

4. $\sum_{j=1}^{\infty} \mathcal{H}^1(\partial \Omega_j) \leq M \mathcal{H}^1(\partial \Omega)$ by complex analysis estimates using $\mathcal{H}^1(\partial \Omega) < \infty$.

In higher dimensions

Apply this proof scheme in higher dimensions by replacing complex analysis with GMT

- (a) Add $\partial \Omega$ Reifenberg flat
- (b) Riemann map \rightarrow Reifenberg parameterization

- 1. Apply the Riemann mapping theorem to get biholomorphic $\varphi : \mathbb{D} \to \Omega$.
- 2. Partition \mathbb{D} into Lipschitz graph domains $\{D_j\}$ such that $\varphi'|_{D_j} \approx \text{constant}$.

3. Define $\Omega_j = \varphi(D_j)$.

4. $\sum_{j=1}^{\infty} \mathcal{H}^1(\partial \Omega_j) \leq M \mathcal{H}^1(\partial \Omega)$ by complex analysis estimates using $\mathcal{H}^1(\partial \Omega) < \infty$.

In higher dimensions

Apply this proof scheme in higher dimensions by replacing complex analysis with GMT

- (a) Add $\partial \Omega$ Reifenberg flat
- (b) Riemann map \rightarrow Reifenberg parameterization

(c) complex analysis estimates \rightarrow Carleson packing estimates for a "corona decomposition" of $\partial \Omega$

(a) Reifenberg flat sets

Definition (Bilateral beta number)

For $E \subseteq \mathbb{R}^n$ and B a ball, the d-bilateral beta number for E inside B is

$$b\beta_E^d(B) = rac{1}{\operatorname{diam}(B)} \inf_{P \ d-\operatorname{plane}} d_H(B \cap E, B \cap P).$$

(a) Reifenberg flat sets

Definition (Bilateral beta number)

For $E \subseteq \mathbb{R}^n$ and B a ball, the d-bilateral beta number for E inside B is

$$b\beta^d_E(B) = rac{1}{\operatorname{diam}(B)} \inf_{P \ d-\operatorname{plane}} d_H(B \cap E, B \cap P).$$

We say that a set $E \subseteq \mathbb{R}^n$ is (ϵ, d) -Reifenberg flat if for all $x \in E$ and r > 0,

 $b\beta_E(B(x,r)) \leq \epsilon.$

We say that a set $E \subseteq \mathbb{R}^n$ is (ϵ, d) -Reifenberg flat if for all $x \in E$ and r > 0,

$b\beta_E(B(x,r)) \leq \epsilon.$

K_0

We say that a set $E \subseteq \mathbb{R}^n$ is (ϵ, d) -Reifenberg flat if for all $x \in E$ and r > 0,

 $b\beta_E^d(B(x,r)) \leq \epsilon.$

We say that a set $E \subseteq \mathbb{R}^n$ is (ϵ, d) -Reifenberg flat if for all $x \in E$ and r > 0,

 $b\beta_E^d(B(x,r)) \leq \epsilon.$

We say that a set $E \subseteq \mathbb{R}^n$ is (ϵ, d) -Reifenberg flat if for all $x \in E$ and r > 0,

 $b\beta_E(B(x,r)) \leq \epsilon.$

Theorem (Reifenberg topological disk theorem)

If $E \subseteq \mathbb{R}^n$ is (ϵ, d) -Reifenberg flat with $0 \in E$ for small ϵ , then $\exists g : \mathbb{R}^n \to \mathbb{R}^n$ bi-Hölder which maps a d-disk onto $E \cap B(0, 1)$. Specifically, g satisfies

$$|\mathcal{C}^{-1}|x-y|^{1+\mathcal{C}\epsilon} \leq |g(x)-g(y)| \leq \mathcal{C}|x-y|^{1-\mathcal{C}\epsilon}$$

and

$$E\cap B(0,1)=g(\mathbb{B}^d(0,1)).$$

Theorem (Reifenberg topological disk theorem)

If $E \subseteq \mathbb{R}^n$ is (ϵ, d) -Reifenberg flat with $0 \in E$ for small ϵ , then $\exists g : \mathbb{R}^n \to \mathbb{R}^n$ bi-Hölder which maps a d-disk onto $E \cap B(0, 1)$. Specifically, g satisfies

$$|\mathcal{C}^{-1}|x-y|^{1+C\epsilon} \leq |g(x)-g(y)| \leq C|x-y|^{1-C\epsilon}$$

and

$$E\cap B(0,1)=g(\mathbb{B}^d(0,1)).$$

• G. David and T. Toro later gave an improved Reifenberg algorithm for "Reifenberg flat sets with holes" which also gave a condition for g to be bi-Lipschitz in terms of an upper bound on "accumulated wiggliness" over all scales at a given point.

Given Reifenberg flat *E*, the Reifenberg construction produces a collection {Σ_k}_{k≥0} of smooth approximations to *E* on scale 2^{-k} used to construct *g*.

Reifenberg construction produces a collection {Σ_k}_{k≥0} of smooth approximations to E on scale 2^{-k} used to construct g.

Reifenberg construction produces a collection {Σ_k}_{k≥0} of smooth approximations to E on scale 2^{-k} used to construct g.

Reifenberg construction produces a collection {Σ_k}_{k≥0} of smooth approximations to E on scale 2^{-k} used to construct g.

g(x, t) parameterizes smooth Σ_t at "height" $\approx t$ above $\partial \Omega$ by interpolating between Σ_k 's $\mathbb{R}^d \times \{1\}$

(c) Reifenberg flat corona decompositions

Theorem (R. Schul, J. Azzam)

Let Σ be (ϵ, d) -Reifenberg flat. Then $\Delta(\Sigma \cap B(0, 1)) = \bigcup_{S \in \mathscr{F}} S$ where for each S, for every $x \in Q \in S$,

(i) $\angle (P_{Q(S)}, P_Q) \le \delta_0$ (controlled tilting)

(ii) $\sum_{x \in Q \in S} \beta_{cont}(Q)^2 \le \epsilon_0$ (controlled wiggliness)

and

$$\sum_{S\in \mathscr{F}}\mathcal{H}^d(Q(S))\lesssim_{\epsilon_0,\delta_0,d}\mathcal{H}^d(\Sigma\cap B(0,1))$$

(1)

(c) Reifenberg flat corona decompositions

Theorem (R. Schul, J. Azzam)

Let Σ be (ϵ, d) -Reifenberg flat. Then $\Delta(\Sigma \cap B(0, 1)) = \bigcup_{S \in \mathscr{F}} S$ where for each S, for every $x \in Q \in S$,

(i) $\angle (P_{Q(S)}, P_Q) \le \delta_0$ (controlled tilting)

(ii) $\sum_{x \in Q \in S} \beta_{cont}(Q)^2 \le \epsilon_0$ (controlled wiggliness)

and

$$\sum_{S\in \mathscr{F}}\mathcal{H}^d(Q(S))\lesssim_{\epsilon_0,\delta_0,d}\mathcal{H}^d(\Sigma\cap B(0,1))$$

Proposition (K.)

 \mathbb{H}^{d+1} has a partition into Lipschitz graph domains $\{D_j\}$ such that $Dg|_{D_j} \approx \text{constant}$, and the family $\{\Omega_j\} = \{g(D_j)\}$ is a collection of Lipschitz graph domains satisfying

$$\sum_{j=1}^\infty \mathcal{H}^d(\partial\Omega_j\cap B(0,1))\lesssim_d \sum_{S\in\mathscr{F}}\mathcal{H}^d(Q(S)) \stackrel{(1)}{\lesssim_{\epsilon_0,\delta_0,d}} \mathcal{H}^d(\partial\Omega\cap B(0,1)).$$

(1)

Proposition (K.)

 \mathbb{H}^{d+1} has a partition into Lipschitz graph domains $\{D_j\}$ such that $Dg|_{D_j} \approx \text{constant}$, and the family $\{\Omega_j\} = \{g(D_j)\}$ is a collection of Lipschitz graph domains satisfying

$$\sum_{j=1}^\infty \mathcal{H}^d(\partial\Omega_j\cap B(0,1))\lesssim_d \sum_{S\in\mathscr{F}}\mathcal{H}^d(Q(S))\lesssim_{\epsilon_0,\delta_0,d}\mathcal{H}^d(\partial\Omega\cap B(0,1))$$

Proposition produces a corona decomposition!

- controlled tilting $\implies g($ "bottom" of D_j) is a graph
- controlled wiggliness \implies $g(``bottom'' ext{ of } D_j)$ has Lipschitz constant $\lesssim \epsilon_0$

RF Corona decomposition \iff disjoint Lipschitz graph domains

RF Corona decomposition \iff disjoint Lipschitz graph domains

RF Corona decomposition \iff disjoint Lipschitz graph domains

Corona decomposition \iff Lipschitz graph domains

Corona decomposition \iff Lipschitz graph domains

Corona decomposition \iff Lipschitz graph domains

To show that $\Omega \subseteq \mathbb{R}^{d+1}$ when $\partial \Omega$ is (ϵ, d) -Reifenberg flat+ has a local decomposition into Lipschitz graph domains...

1. Apply David-Toro Reifenberg to get bi-Lipschitz $g:\mathbb{H}^{d+1} o \Omega$

- 1. Apply David-Toro Reifenberg to get bi-Lipschitz $g: \mathbb{H}^{d+1} \to \Omega$
- 2. Partition \mathbb{H}^{d+1} into Lipschitz graph domains $\{D_j\}$ on which $Dg \approx \text{constant}$ by following a corona decomposition of $\partial \Omega$.

- 1. Apply David-Toro Reifenberg to get bi-Lipschitz $g: \mathbb{H}^{d+1} \to \Omega$
- 2. Partition \mathbb{H}^{d+1} into Lipschitz graph domains $\{D_j\}$ on which $Dg \approx \text{constant}$ by following a corona decomposition of $\partial \Omega$.
- 3. Define $\Omega_j = \varphi(D_j)$

- 1. Apply David-Toro Reifenberg to get bi-Lipschitz $g:\mathbb{H}^{d+1}
 ightarrow \Omega$
- 2. Partition \mathbb{H}^{d+1} into Lipschitz graph domains $\{D_j\}$ on which $Dg \approx \text{constant}$ by following a corona decomposition of $\partial \Omega$.
- 3. Define $\Omega_j = \varphi(D_j)$
- 4. Prove $\sum_{j=1}^{\infty} \mathcal{H}^d(\partial \Omega_j \cap B(0,1)) \leq M \mathcal{H}^d(\partial \Omega \cap B(0,1))$ by using Carleson packing estimates.

Reifenberg flat + Jones function bound

Theorem (K.)

For all M > 0, there is $\epsilon(d, M) > 0$ such that for any $\Omega \subseteq \mathbb{R}^{d+1}$, if

1. $\partial \Omega$ is (ϵ , d) Reifenberg flat,

2.
$$\sum_{x \in Q} \beta_{cont}(Q)^2 \leq M$$
 for all $x \in \partial \Omega \cap B(0,1)$,

then there exists a d-rectifiable set Σ such that

$$\Omega\cap B(0,1)\setminus \Sigma = igcup_{j=1}^\infty \Omega_j$$

where Ω_j is M-Lipschitz and

$$\sum_{j=1}^\infty \mathcal{H}^d(\partial\Omega_j\cap B(0,1)))\leq M\mathcal{H}^d(\partial\Omega\cap B(0,1))$$

No β^2 sum bound

No β^2 sum bound

Theorem (K.)

There exist constants M(d), $\epsilon(d) > 0$ such that if $\partial \Omega$ is (ϵ, d) -Reifenberg flat, then there exists a collection of M-Lipschitz graph domains $\{\Omega_j\}$ such that

- (a) $\Omega_j \subseteq \Omega$
- (b) $\Omega \cap B(0,1) \subseteq igcup_{j=1}^\infty \Omega_j$
- (c) $\exists C(d) > 0$ such that $\forall x \in \mathbb{R}^{d+1}$, $x \in \Omega_j$ for at most C j's
- (d) $\sum_{j=1}^{\infty} \mathcal{H}^d(\partial \Omega_j \cap B(0,1)) \leq M \mathcal{H}^d(\partial \Omega \cap B(0,1))$

No β^2 sum bound

Theorem (K.)

There exist constants M(d), $\epsilon(d) > 0$ such that if $\partial \Omega$ is (ϵ, d) -Reifenberg flat, then there exists a collection of M-Lipschitz graph domains $\{\Omega_j\}$ such that

- (a) $\Omega_j \subseteq \Omega$
- (b) $\Omega \cap B(0,1) \subseteq igcup_{j=1}^\infty \Omega_j$
- (c) $\exists C(d) > 0$ such that $\forall x \in \mathbb{R}^{d+1}$, $x \in \Omega_j$ for at most C j's
- (d) $\sum_{j=1}^{\infty} \mathcal{H}^d(\partial \Omega_j \cap B(0,1)) \leq M \mathcal{H}^d(\partial \Omega \cap B(0,1))$

Theorem (K.)

Suppose $\partial\Omega$ is d-uniformly rectifiable. Then there exists M > 0 dependent on the uniform rectifiability constants such that there exists a collection of M-Lipschitz graph domains $\{\Omega_j\}$ such that (a), (b), (c) of the previous theorem hold, and (d') $\sum_{j=1}^{\infty} \mathcal{H}^d(\partial\Omega_j \cap B(y,r)) \leq M\mathcal{H}^d(\partial\Omega \cap B(y,r))$ for all $y \in \partial\Omega \cap B(0,1)$ and r > 0.