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Lipschitz graph domains

Definition

We call an open set Ω ⊆ Rd+1 an M-Lipschitz graph domain if, after possibly translating
and dilating Ω, there exists a function r : Sd → R+ such that

∂Ω = {r(θ)θ : θ ∈ Sd}

where for all θ, ψ ∈ Sd , we have

|r(θ)− r(ψ)| ≤ M|θ − ψ|,

1

M + 1
≤ r(θ) ≤ 1.
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Jones’s Lipschitz decomposition result in R2

Theorem (Jones)

There is a constant M > 0 such that for any simply connected domain Ω ⊆ R2 with H1(∂Ω) < ∞, there exists
a rectifiable curve Γ, (H1(Γ) < ∞) such that

Ω \ Γ =
∞⋃
j=1

Ωj

where {Ωj}j is a collection of disjoint M-Lipschitz graph domains satisfying

∞∑
j=1

H1(∂Ωj) ≤ MH1(∂Ω)
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Question

For Ω ⊆ Rd , d > 2, can we find geometric sufficient conditions on ∂Ω for the existence of Jones-type Lipschitz
decompositions?
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Ideas of proof of Jones’s result

1. Apply the Riemann mapping theorem to get biholomorphic φ : D → Ω.

2. Partition D into Lipschitz graph domains {Dj} such that φ′|Dj
≈ constant.
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Ideas of proof of Jones’s result

1. Apply the Riemann mapping theorem to get biholomorphic φ : D → Ω.

2. Partition D into Lipschitz graph domains {Dj} such that φ′|Dj
≈ constant.

3. Define Ωj = φ(Dj).

4.
∑∞

j=1H1(∂Ωj) ≤ MH1(∂Ω) by complex analysis estimates using H1(∂Ω) <∞.

In higher dimensions

Apply this proof scheme in higher dimensions by replacing complex analysis with GMT

(a) Add ∂Ω Reifenberg flat

(b) Riemann map → Reifenberg parameterization

(c) complex analysis estimates → Carleson packing estimates for a “corona decomposition”
of ∂Ω
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(a) Reifenberg flat sets

Definition (Bilateral beta number)

For E ⊆ Rn and B a ball, the d-bilateral beta number for E inside B is

bβdE (B) =
1

diam(B)
inf

P d-plane
dH(B ∩ E ,B ∩ P).
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(a) Reifenberg flat sets

Definition

We say that a set E ⊆ Rn is (ϵ, d)-Reifenberg flat if for all x ∈ E and r > 0,

bβE (B(x , r)) ≤ ϵ.
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(b) Reifenberg parameterization

Theorem (Reifenberg topological disk theorem)

If E ⊆ Rn is (ϵ, d)-Reifenberg flat with 0 ∈ E for small ϵ, then ∃g : Rn → Rn bi-Hölder which
maps a d-disk onto E ∩ B(0, 1). Specifically, g satisfies

C−1|x − y |1+Cϵ ≤ |g(x)− g(y)| ≤ C |x − y |1−Cϵ

and
E ∩ B(0, 1) = g(Bd(0, 1)).

• G. David and T. Toro later gave an improved Reifenberg algorithm for “Reifenberg flat
sets with holes” which also gave a condition for g to be bi-Lipschitz in terms of an upper
bound on “accumulated wiggliness” over all scales at a given point.
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(b) Reifenberg parameterization and the geometry of ∂Ω

• Given Reifenberg flat E , the Reifenberg construction produces a collection {Σk}k≥0 of smooth
approximations to E on scale 2−k used to construct g .
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(b) Reifenberg parameterization and the geometry of ∂Ω

g(x , t) parameterizes smooth Σt at “height” ≈ t above ∂Ω by interpolating between Σk ’s
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(c) Reifenberg flat corona decompositions

Theorem (R. Schul, J. Azzam)

Let Σ be (ϵ, d)-Reifenberg flat. Then ∆(Σ ∩ B(0, 1)) =
⋃

S∈F S where for each S, for every x ∈ Q ∈ S,

(i) ∠(PQ(S),PQ) ≤ δ0 (controlled tilting)

(ii)
∑

x∈Q∈S βcont(Q)2 ≤ ϵ0 (controlled wiggliness)

and ∑
S∈F

Hd(Q(S)) ≲ϵ0,δ0,d Hd(Σ ∩ B(0, 1)) (1)

Proposition (K.)

Hd+1 has a partition into Lipschitz graph domains {Dj} such that Dg |Dj ≈ constant, and the family
{Ωj} = {g(Dj)} is a collection of Lipschitz graph domains satisfying

∞∑
j=1

Hd(∂Ωj ∩ B(0, 1)) ≲d

∑
S∈F

Hd(Q(S))
(1)

≲ϵ0,δ0,d
Hd(∂Ω ∩ B(0, 1)).
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(c) Reifenberg flat corona decompositions

Proposition (K.)

Hd+1 has a partition into Lipschitz graph domains {Dj} such that Dg |Dj ≈ constant, and the family
{Ωj} = {g(Dj)} is a collection of Lipschitz graph domains satisfying

∞∑
j=1

Hd(∂Ωj ∩ B(0, 1)) ≲d

∑
S∈F

Hd(Q(S)) ≲ϵ0,δ0,d Hd(∂Ω ∩ B(0, 1)).

Proposition produces a corona decomposition!

• controlled tilting =⇒ g(“bottom” of Dj) is a graph

• controlled wiggliness =⇒ g(“bottom” of Dj) has Lipschitz constant ≲ ϵ0
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RF Corona decomposition ⇐⇒ disjoint Lipschitz graph

domains
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Corona decomposition ⇐⇒ Lipschitz graph domains
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Corona decomposition ⇐⇒ Lipschitz graph domains
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Jones’s proof scheme with QGMT

To show that Ω ⊆ Rd+1 when ∂Ω is (ϵ, d)-Reifenberg flat+ has a local decomposition into
Lipschitz graph domains...

1. Apply David-Toro Reifenberg to get bi-Lipschitz g : Hd+1 → Ω

2. Partition Hd+1 into Lipschitz graph domains {Dj} on which Dg ≈ constant by following a
corona decomposition of ∂Ω.

3. Define Ωj = φ(Dj)

4. Prove
∑∞

j=1Hd(∂Ωj ∩ B(0, 1)) ≤ MHd(∂Ω ∩ B(0, 1)) by using Carleson packing
estimates.
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Reifenberg flat + Jones function bound

Theorem (K.)

For all M > 0, there is ϵ(d ,M) > 0 such that for any Ω ⊆ Rd+1, if

1. ∂Ω is (ϵ, d) Reifenberg flat,

2.
∑

x∈Q βcont(Q)2 ≤ M for all x ∈ ∂Ω ∩ B(0, 1),

then there exists a d-rectifiable set Σ such that

Ω ∩ B(0, 1) \ Σ =
∞⋃
j=1

Ωj

where Ωj is M-Lipschitz and

∞∑
j=1

Hd(∂Ωj ∩ B(0, 1))) ≤ MHd(∂Ω ∩ B(0, 1))
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No β2 sum bound
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No β2 sum bound

Theorem (K.)

There exist constants M(d), ϵ(d) > 0 such that if ∂Ω is (ϵ, d)-Reifenberg flat, then there
exists a collection of M-Lipschitz graph domains {Ωj} such that

(a) Ωj ⊆ Ω

(b) Ω ∩ B(0, 1) ⊆
⋃∞

j=1Ωj

(c) ∃C (d) > 0 such that ∀x ∈ Rd+1, x ∈ Ωj for at most C j’s

(d)
∑∞

j=1Hd(∂Ωj ∩ B(0, 1)) ≤ MHd(∂Ω ∩ B(0, 1))

Theorem (K.)

Suppose ∂Ω is d-uniformly rectifiable. Then there exists M > 0 dependent on the uniform
rectifiability constants such that there exists a collection of M-Lipschitz graph domains {Ωj}
such that (a), (b), (c) of the previous theorem hold, and

(d’)
∑∞

j=1Hd(∂Ωj ∩ B(y , r)) ≤ MHd(∂Ω ∩ B(y , r)) for all y ∈ ∂Ω ∩ B(0, 1) and r > 0.
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