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What is Geometric Measure Theory?

• Introductory real analysis: Study properties of real-valued functions. What does it mean
for f to be...

1. Continuous?
2. Differentiable?
3. Measurable?
4. in Lp?

• Geometric measure theory: Use analysis to study geometric properties of sets and
measures in Rn.

• How “flat” is a set? (How well is it approximated by d-planes?)
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Tangent Lines
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Tangent Lines
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Tangent Lines

• Infinitesimal: Forgets about larger scales

• Not Quantitative: No bounds on degree of non-flatness
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What is Quantitative Geometric Measure Theory?

Question

How do we quantify the degree to which a set is flat over all scales and all locations?

Key construction: Good part and Bad part

• Scale and location in E ≈ ball B(x , t)

• Classify scales and locations as good or bad:

G ≈ {balls where E looks flat}
B ≈ {balls where E does not look flat}
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A Tool for Quantifying Flatness: Beta Number
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A Tool for Quantifying Flatness: Beta number

• βE (B) = infL
d
r = width of thinnest strip containing E ∩ B

r .
• 0 ≤ βE (B) ≤ 1.
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A Tool for Isolating Scales and Locations: Cubes

Instead of balls, use “intrinsic” dyadic cubes ∆(E ).

Figure: D(Rn) =
⋃

k∈Z Dk Figure: ∆(E) =
⋃

k∈Z ∆k(E)
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What is Quantitative Geometric Measure Theory?

Question

How do we quantify the degree to which a set is flat over all scales and all locations?

Key construction: Good part and Bad part

• Scale and location in E ≈ ball B(x , t)

• Classify scales and locations as good or bad. For example:

G = {Q ∈ ∆(E ) : βE (Q) ≤ ϵ}
B = {Q ∈ ∆(E ) : βE (Q) > ϵ}
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Regularity: Carleson Packing Condition

Question

How can we use G and B to quantitatively impose geometric regularity?

Definition (Carleson Packing)

A family B ⊆ ∆(E ) satisfies a Carleson packing condition with constant C if, for all
Q ∈ ∆(E ), ∑

R⊆Q
R∈B

vol(R) ≤ Cvol(Q)
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Regularity: Carleson Packing Condition
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Stopping Time Regions

We can “package” G into “connected” regions F = {Si}i for performing constructions.
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Corona Decomposition

Definition (Corona Decomposition)

E ⊆ Rn admits a corona decomposition if there exists a triple (B,G ,F ) such that:

(i) B and {Q(S)}S∈F satisfy Carleson packing conditions

(ii) For any S ∈ F , there exists a 1-Lipschitz graph Γ(S) such that for any Q ∈ S ,

dist(x , Γ(S)) ≤ diam(Q) for any x ∈ 2Q.

22 / 25



Corona Decomposition

Definition (Corona Decomposition)

E ⊆ Rn admits a corona decomposition if there exists a triple (B,G ,F ) such that:

(i) B and {Q(S)}S∈F satisfy Carleson packing conditions

(ii) For any S ∈ F , there exists a 1-Lipschitz graph Γ(S) such that for any Q ∈ S ,

dist(x , Γ(S)) ≤ diam(Q) for any x ∈ 2Q.

23 / 25



Corona Decomposition

Definition (Corona Decomposition)

E ⊆ Rn admits a corona decomposition if there exists a triple (B,G ,F ) such that:

(i) B and {Q(S)}S∈F satisfy Carleson packing conditions

(ii) For any S ∈ F , there exists a 1-Lipschitz graph Γ(S) such that for any Q ∈ S ,

dist(x , Γ(S)) ≤ diam(Q) for any x ∈ 2Q.

24 / 25



Corona Decomposition

Definition (Corona Decomposition)

E ⊆ Rn admits a corona decomposition if there exists a triple (B,G ,F ) such that:

(i) B and {Q(S)}S∈F satisfy Carleson packing conditions

(ii) For any S ∈ F , there exists a 1-Lipschitz graph Γ(S) such that for any Q ∈ S ,

dist(x , Γ(S)) ≤ diam(Q) for any x ∈ 2Q.

25 / 25


