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Rectifiability

Definition (n-rectifiable sets)

We say E ⊆ X is n-rectifiable if there exists a countable collection of Lipschitz maps
fi : Ai ⊆ Rn → X such that

H n

(
E \

⋃
i

fi (Ai )

)
= 0

Theorem

Let E ⊆ Rd satisfy H n(E ) <∞. E is
n-rectifiable if and only if E has an
approximate tangent n-plane Lx at H n-a.e.
x ∈ E. That is, for all ϵ > 0,

lim
r→0

H n(B(x , r) ∩ E \ Nϵr (Lx))

(2r)n
= 0.
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Definition (uniform n-rectifiability)

X is uniformly n-rectifiable if it is Ahlfors n-regular, i.e., there exists C0 > 0 such that for all
x ∈ X and 0 < r < diam(X ),

C−1
0 rn ≤ H n(B(x , r)) ≤ C0r

n,

and X has Big Pieces of Lipschitz images of Rn (BPLI), i.e., there exist L, θ > 0 such that for
all x ∈ X and 0 < r < diam(X ), there is an L-Lipschitz map f : A ⊆ Bn(0, r) → X such that

H n(B(x , r) ∩ f (A)) ≥ θrn.



Qualitative vs Quantitative Approximate Tangents

n-Rectifiable ⇐⇒ “tangent plane” a.e. on infinitesimal scales
n-UR ⇐⇒ “coarse tangent plane” at “most” scales and locations

Definition (Bilateral Beta numbers)

Let E ⊆ Rd and for any ball B define

bβE (B) = inf
P n-plane

1

diam(B)
dH(E ∩ B,P ∩ B)

Theorem (David and Semmes)

Let E ⊆ Rd be Ahlfors n-regular. Then E is
n-UR iff E satisfies the BWGL. That is, for all
ϵ > 0, the following set is a Carleson set:

{(x , t) ∈ E × (0,diam(E )) : bβE (x , t) > ϵ}



Qualitative vs Quantitative Approximate Tangents

n-Rectifiable ⇐⇒ “tangent plane” a.e. on infinitesimal scales
n-UR ⇐⇒ “coarse tangent plane” at “most” scales and locations

Definition (Bilateral Beta numbers)

Let E ⊆ Rd and for any ball B define

bβE (B) = inf
P n-plane

1

diam(B)
dH(E ∩ B,P ∩ B)

Theorem (David and Semmes)

Let E ⊆ Rd be Ahlfors n-regular. Then E is
n-UR iff E satisfies the BWGL. That is, for all
ϵ > 0, the following set is a Carleson set:

{(x , t) ∈ E × (0,diam(E )) : bβE (x , t) > ϵ}



Qualitative vs Quantitative Approximate Tangents

n-Rectifiable ⇐⇒ “tangent plane” a.e. on infinitesimal scales
n-UR ⇐⇒ “coarse tangent plane” at “most” scales and locations

Definition (Bilateral Beta numbers)

Let E ⊆ Rd and for any ball B define

bβE (B) = inf
P n-plane

1

diam(B)
dH(E ∩ B,P ∩ B)

Theorem (David and Semmes)

Let E ⊆ Rd be Ahlfors n-regular. Then E is
n-UR iff E satisfies the BWGL. That is, for all
ϵ > 0, the following set is a Carleson set:

{(x , t) ∈ E × (0,diam(E )) : bβE (x , t) > ϵ}



Our quantitative topics

1 Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

2 Lipschitz decompositions: The existence of decompositions of domains with UR/RF
boundary into a controlled number of nice pieces,

3 Stability of iterating the big pieces operator,

4 Quantitative rectifiability of curves: Relationships between the length of a curve and how
non-flat it is at each scale and location,
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1. Densities

Theorem (Besicovitch, Mattila, Marstrand. Kircheim for E ⊆ X )

Let E ⊆ Rd be H n measurable with H n(E ) <∞. E is n-rectifiable if and only if for
H n-a.e. x ∈ E,

lim
r→0

H n(E ∩ B(x , r))

(2r)n
= 1.

If E ⊆ X is n-rectifiable, then the above equation holds.
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Definition (Weak constant density (WCD))

Let E ⊆ Rd , ϵ > 0 and define

G (ϵ) =

{
(x , t) ∈ E × R+ : ∃cx ,t > 0,

∣∣∣∣H n|E (B(y , r))
(2r)n

− cx ,t

∣∣∣∣ ≤ ϵ for y ∈ B(x , t), r ≳ϵ t

}
,

B(ϵ) = E × R+ \ G (ϵ).

E satisfies the WCD if B(ϵ) is a Carleson set for every ϵ > 0.

Theorem (David, Semmes, Tolsa)

Let E ⊆ Rd be Ahlfors n-regular. E is uniformly n-rectifiable ⇐⇒ E satisfies the WCD.

Theorem (K.)

Uniformly n-rectifiable metric spaces satisfy the WCD
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Our quantitative topics

1 Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

2 Lipschitz decompositions: The existence of decompositions of domains with
UR/RF boundary into a controlled number of nice pieces,

3 Stability of iterating the big pieces operator,

4 Quantitative rectifiability of curves: Relationships between the length of a curve and how
non-flat it is at each scale and location,



2. Decompositions of domains

Definition (Whitney
decomposition)

We say that W is a Whitney
decomposition of a domain Ω ⊆ Rn+1

if W is a collection of closed cubes
W = {Qj}j∈N such that for all
Q ∈ W,

(i) Ω =
⋃

Q∈W Q,

(ii) If Q ̸= Q ′, then Q and Q ′ have
disjoint interiors,

(iii) dist(Q,Ωc) ≍n diam(Q).

But
∑
Q∈W

H n(∂Q) = ∞!



Definition (Lipschitz domains)

We say that a domain Ω ⊆ C is an M-Lipschitz
domain if, after a translation and dilation,

∂Ω =
{
r(θ)e iθ : 0 ≤ θ ≤ 2π

}
,

and for any θ, ψ ∈ [0, 2π],

|r(θ)− r(ψ)| ≤ M|θ − ψ|

and
1

1 +M
≤ r(θ) ≤ 1



Theorem (Jones)

There is a constant M > 0 such that for
any simply connected domain Ω ⊆ R2

with H 1(∂Ω) <∞, there exists a finite
length curve Γ, such that

Ω \ Γ =
∞⋃
j=1

Ωj

where {Ωj}j is a collection of disjoint
M-Lipschitz domains satisfying

∞∑
j=1

H 1(∂Ωj) ≤ MH 1(∂Ω)

Question

What about higher dimensions? Let’s assume ∂Ω is n-UR...
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Theorem (K.)

There exist constants M(n),A(n) > 0 such that if Ω ⊆ Rn+1 is a domain where ∂Ω is n-UR,
then there exists a collection of M-Lipschitz domains {Ωj} such that

(i) Ω =
⋃∞

j=1Ωj ,

(ii) ∃C (n) > 0 such that ∀x ∈ Rn+1, x ∈ Ωj for at most C values of j ,

(iii) For any y ∈ ∂Ω, 0 < r ≤ 1,

∞∑
j=1

H n(∂Ωj ∩ B(y , r)) ≲n,C0,θ,L H n(B(y ,Ar) ∩ ∂Ω).

Theorem (K.)

There exists ϵ(n),A(n),M(n) > 0 such that if ∂Ω is (ϵ, n)-Reifenberg flat then there exists a
collection of M-Lipschitz domains {Ωj} such that the conclusions of the previous theorem hold.
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Our quantitative topics

1 Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

2 Lipschitz decompositions: The existence of decompositions of domains with UR/RF
boundary into a controlled number of nice pieces,

3 Stability of the big pieces operator under iteration,

4 Quantitative rectifiability of curves: Relationships between the length of a curve and how
non-flat it is at each scale and location,



3. Big Pieces

Definition (Big pieces of F )

Let F be a class of Ahlfors n-regular subsets of a metric space X and let E ⊆ X . We say that
E ∈ BP(F ) if E is Ahlfors n-regular and there exists θ > 0 such that for all x ∈ E and
0 < r < diam(E ), there exists Fx ,r ∈ F such that

H n(E ∩ B(x , r) ∩ Fx ,r ) ≥ θrn.

Theorem (David and Semmes)

Let E ⊆ Rd be Ahlfors n-regular. Then the following are equivalent

1 E ∈ BP(LI), i.e., E is uniformly n-rectifiable,

2 E ∈ BPj(LI) for j ≥ 1,

3 E ∈ BPj(LG) for j ≥ 2.
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Theorem (K., Schul)
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BPj(F ) ⊆ BP2(F ).

Theorem (K., Schul)

Let E ⊆ X be an Ahlfors n-regular set with E ∈ BP(BP(F )). There exists a set F ⊆ X such
that

(i) E ⊆ F ,

(ii) F is Ahlfors n-regular.

(iii) F ∈ BP(F ).

The constants in the conclusion are quantitative with dependence on the constants in the
assumptions.
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Our quantitative topics

1 Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

2 Lipschitz decompositions: The existence of decompositions of domains with UR/RF
boundary into a controlled number of nice pieces,

3 Stability of iterating the big pieces operator,

4 Quantitative rectifiability of curves: Relationships between the length of a curve
and how non-flat it is at each scale and location,
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When is E ⊆ R2 contained in a finite length curve? How long must the curve be?
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Question

When is E ⊆ R2 contained in a finite length curve? How long must the curve be?

Theorem (Jones: R2, Okikiolu: Rn, Schul:
Hilbert space)

E ⊆ Γ ⊆ R2 with ℓ(Γ) <∞ if and only if

diam(E ) +
∑

Q∈D(R2)

βE (3Q)2 diam(Q) <∞.

Moreover,

ℓ(Γ) ≍ diam(E ) +
∑

Q∈D(R2)

βE (3Q)2 diam(Q)



Theorem (Bishop)

Let Γ ⊆ Rd be a Jordan arc. Then
∑

Q∈D(Rd ) βΓ(3Q)2 diam(Q) ≍d ℓ(Γ)− crd(Γ).

Theorem (K.)

Let H be a Hilbert space and let Γ ⊆ H be a Jordan arc. For any multiresolution family H
associated to Γ with inflation factor A > 200, we have∑

Q∈H

βΓ(Q)2 diam(Q) ≍A ℓ(Γ)− crd(Γ).
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Thank You!

Thank you!



Theorem (David and Semmes in Rd ; Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all ϵ > 0 there is an L ≥ 1 such that
for each x ∈ X and r > 0 there exists F ⊆ B(x , r), satisfying H n

X (B(x , r) \ F ) ≤ ϵrn and an
L-bi-Lipschitz map f : F → Rn.
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Let f : [0, 1]n ↠ Σ be L-bi-Lipschitz.

1 By the area formula, H n|Σ can be
calculated by integrating Jf = Jac(Df ).

2 This means densities correspond to
averages of Jf : [0, 1]n → R, Jf ∈ L∞.

3 Changes in the averages of Jf ∈ L2 ∩ L∞

mean large wavelet coefficients.

4 Therefore, densities cannot change too
often.
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1 Let W be a Whitney decomposition of Ω. Declare Q ∈ W Good if bβ∂Ω(10Q) ≤ ϵ.
2 For any two Good cubes Q,Q ′, if ∂Q ∩ ∂Q ′ ̸= ∅, then dissolve ∂Q ∩ ∂Q ′.
3 Carve up what remains into Lipschitz domains without ruining surface area estimates.
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Proof of the Corollary: E ∈ BP3(F ) =⇒ E ∈ BP2(F )
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ℓ(Γ)− crd(Γ) =
∞∑
i=0

ℓ(Γi+1)− ℓ(Γi ) ≈
∞∑
i=0

∑
Q∈H

rad(Q)≍2−i

βΓ(Q)2 diam(Q)
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For cubes with “flat arcs”, we require Schul’s geometric martingales combined with a new
tool: Let ρ(t) = 1− γ′1(t). We introduce an “excess length” measure dµ = γ∗[ρdt]. Notice

µ(Γ) =

∫ ℓ(Γ)

0
(1− γ′1(t))dt = ℓ(Γ)− crd(Γ).


