Topics in Quantitative Rectifiability: Densities, Lipschitz Decompositions, Big Pieces, and Traveling Salesmen

Jared Krandel

Thesis Defense

May 6, 2024

Rectifiability

Definition (*n*-rectifiable sets)

We say $E \subseteq X$ is *n*-rectifiable if there exists a countable collection of Lipschitz maps $f_i : A_i \subseteq \mathbb{R}^n \to X$ such that

$$\mathscr{H}^n\left(E\setminus\bigcup_i f_i(A_i)\right)=0$$

Rectifiability

Definition (*n*-rectifiable sets)

We say $E \subseteq X$ is *n*-rectifiable if there exists a countable collection of Lipschitz maps $f_i : A_i \subseteq \mathbb{R}^n \to X$ such that

$$\mathscr{H}^n\left(E\setminus\bigcup_i f_i(A_i)\right)=0$$

Theorem

Let $E \subseteq \mathbb{R}^d$ satisfy $\mathscr{H}^n(E) < \infty$. E is n-rectifiable if and only if E has an approximate tangent n-plane L_x at \mathscr{H}^n -a.e. $x \in E$. That is, for all $\epsilon > 0$.

$$\lim_{r\to 0}\frac{\mathscr{H}^n(B(x,r)\cap E\setminus N_{\epsilon r}(L_x))}{(2r)^n}=0.$$

Rectifiability

Definition (*n*-rectifiable sets)

We say $E \subseteq X$ is *n*-rectifiable if there exists a countable collection of Lipschitz maps $f_i : A_i \subseteq \mathbb{R}^n \to X$ such that

$$\mathscr{H}^n\left(E\setminus\bigcup_i f_i(A_i)\right)=0$$

Theorem

Let $E \subseteq \mathbb{R}^d$ satisfy $\mathscr{H}^n(E) < \infty$. E is n-rectifiable if and only if E has approximate tangent n-plane L_x at \mathscr{H}^n -a.e. $x \in E$. That is, for all $\epsilon > 0$,

$$\lim_{r\to 0}\frac{\mathscr{H}^n(B(x,r)\cap E\setminus N_{\epsilon r}(L_x))}{(2r)^n}=0.$$

Definition (uniform *n*-rectifiability)

X is uniformly n-rectifiable if it is Ahlfors n-regular, i.e., there exists $C_0 > 0$ such that for all $x \in X$ and $0 < r < \operatorname{diam}(X)$,

$$C_0^{-1}r^n \leq \mathscr{H}^n(B(x,r)) \leq C_0r^n,$$

and X has Big Pieces of Lipschitz images of \mathbb{R}^n (BPLI), i.e., there exist $L, \theta > 0$ such that for all $x \in X$ and $0 < r < \operatorname{diam}(X)$, there is an L-Lipschitz map $f : A \subseteq B^n(0,r) \to X$ such that

$$\mathscr{H}^n(B(x,r)\cap f(A))\geq \theta r^n.$$

Qualitative vs Quantitative **Approximate Tangents**

n-Rectifiable ←⇒ "tangent plane" a.e. on infinitesimal scales

 $\textit{n-}\mathsf{UR}$ \iff "coarse tangent plane" at "most" scales and locations

Qualitative vs Quantitative **Approximate Tangents**

 $\emph{n-}$ Rectifiable \iff "tangent plane" a.e. on infinitesimal scales

Definition (Bilateral Beta numbers)

Let $E \subseteq \mathbb{R}^d$ and for any ball B define

$$b\beta_E(B) = \inf_{P \text{ n-plane}} \frac{1}{\operatorname{diam}(B)} d_H(E \cap B, P \cap B)$$

Qualitative vs Quantitative **Approximate Tangents**

n-Rectifiable ←⇒ "tangent plane" a.e. on infinitesimal scales ⇔ "coarse tangent plane" at "most" scales and locations n-UR

Definition (Bilateral Beta numbers)

Let $E \subseteq \mathbb{R}^d$ and for any ball B define

$$b\beta_E(B) = \inf_{P \text{ n-plane}} \frac{1}{\operatorname{diam}(B)} d_H(E \cap B, P \cap B)$$

Theorem (David and Semmes)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors n-regular. Then E is n-UR iff E satisfies the BWGL. That is, for all $\epsilon > 0$, the following set is a Carleson set:

Our quantitative topics

- Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff measure,
- 2 Lipschitz decompositions: The existence of decompositions of domains with UR/RF boundary into a controlled number of nice pieces,
- 3 Stability of iterating the big pieces operator,
- Quantitative rectifiability of curves: Relationships between the length of a curve and how non-flat it is at each scale and location,

Our quantitative topics

- Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff measure,
- 2 Lipschitz decompositions: The existence of decompositions of domains with UR/RF boundary into a controlled number of nice pieces,
- 3 Stability of iterating the big pieces operator,
- Quantitative rectifiability of curves: Relationships between the length of a curve and how non-flat it is at each scale and location,

1. Densities

Theorem (Besicovitch, Mattila, Marstrand. Kircheim for $E \subseteq X$)

Let $E \subseteq \mathbb{R}^d$ be \mathscr{H}^n measurable with $\mathscr{H}^n(E) < \infty$. E is n-rectifiable if and only if for \mathscr{H}^n -a.e. $x \in E$,

$$\lim_{r\to 0}\frac{\mathscr{H}^n(E\cap B(x,r))}{(2r)^n}=1.$$

If $E \subseteq X$ is n-rectifiable, then the above equation holds.

Qualitative vs. Quantitative **Densities**

 $\textit{n}\text{-Rectifiable} \implies \text{density} \approx 1 \text{ a.e. on infinitesimal scales}$

n-UR \implies density $\approx c_{x,t}$ around "most" (x,t)

Qualitative vs. Quantitative Densities

 $\emph{n}\text{-Rectifiable} \implies \text{density} \approx 1 \text{ a.e. on infinitesimal scales}$

n-UR \implies density $\approx c_{x,t}$ around "most" (x,t)

Definition (Weak constant density (WCD))

Let $E \subseteq \mathbb{R}^d$, $\epsilon > 0$ and define

$$\mathscr{G}(\epsilon) = \left\{ (x,t) \in E \times \mathbb{R}^+ : \exists c_{x,t} > 0, \ \left| \frac{\mathscr{H}^n|_{E}(B(y,r))}{(2r)^n} - c_{x,t} \right| \le \epsilon \text{ for } y \in B(x,t), \ r \gtrsim_{\epsilon} t \right\},$$

$$\mathscr{B}(\epsilon) = E \times \mathbb{R}^+ \setminus \mathscr{G}(\epsilon).$$

E satisfies the WCD if $\mathcal{B}(\epsilon)$ is a Carleson set for every $\epsilon > 0$.

Definition (Weak constant density (WCD))

Let $E \subseteq \mathbb{R}^d$, $\epsilon > 0$ and define

$$\mathscr{G}(\epsilon) = \left\{ (x,t) \in E \times \mathbb{R}^+ : \exists c_{x,t} > 0, \ \left| \frac{\mathscr{H}^n|_{E}(B(y,r))}{(2r)^n} - c_{x,t} \right| \le \epsilon \text{ for } y \in B(x,t), \ r \gtrsim_{\epsilon} t \right\},$$

$$\mathscr{B}(\epsilon) = E \times \mathbb{R}^+ \setminus \mathscr{G}(\epsilon).$$

E satisfies the WCD if $\mathcal{B}(\epsilon)$ is a Carleson set for every $\epsilon > 0$.

Theorem (David, Semmes, Tolsa)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors n-regular. E is uniformly n-rectifiable \iff E satisfies the WCD.

Definition (Weak constant density (WCD))

Let $E \subseteq \mathbb{R}^d$, $\epsilon > 0$ and define

$$\mathscr{G}(\epsilon) = \left\{ (x,t) \in E \times \mathbb{R}^+ : \exists c_{x,t} > 0, \ \left| \frac{\mathscr{H}^n|_E(B(y,r))}{(2r)^n} - c_{x,t} \right| \le \epsilon \text{ for } y \in B(x,t), \ r \gtrsim_{\epsilon} t \right\},$$

$$\mathscr{B}(\epsilon) = E \times \mathbb{R}^+ \setminus \mathscr{G}(\epsilon).$$

E satisfies the WCD if $\mathcal{B}(\epsilon)$ is a Carleson set for every $\epsilon > 0$.

Theorem (David, Semmes, Tolsa)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors n-regular. E is uniformly n-rectifiable \iff E satisfies the WCD.

Theorem (K.)

Uniformly n-rectifiable metric spaces satisfy the WCD

Our quantitative topics

- Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff measure,
- Lipschitz decompositions: The existence of decompositions of domains with UR/RF boundary into a controlled number of nice pieces,
- 3 Stability of iterating the big pieces operator,
- Quantitative rectifiability of curves: Relationships between the length of a curve and how non-flat it is at each scale and location,

2. Decompositions of domains

Definition (Whitney decomposition)

We say that \mathcal{W} is a Whitney decomposition of a domain $\Omega \subseteq \mathbb{R}^{n+1}$ if \mathcal{W} is a collection of closed cubes $\mathcal{W} = \{Q_j\}_{j \in \mathbb{N}}$ such that for all $Q \in \mathcal{W}$.

- (i) $\Omega = \bigcup_{Q \in \mathcal{W}} Q$,
- (ii) If $Q \neq Q'$, then Q and Q' have disjoint interiors,
- (iii) $\operatorname{dist}(Q,\Omega^c) \asymp_n \operatorname{diam}(Q)$.

But
$$\sum_{Q \in \mathcal{W}} \mathscr{H}^n(\partial Q) = \infty!$$

Definition (Lipschitz domains)

We say that a domain $\Omega \subseteq \mathbb{C}$ is an *M-Lipschitz domain* if, after a translation and dilation,

$$\partial\Omega=\left\{r(\theta)e^{i\theta}:0\leq\theta\leq2\pi
ight\},$$

and for any $\theta, \psi \in [0, 2\pi],$

$$|r(\theta) - r(\psi)| \le M|\theta - \psi|$$

and

$$\frac{1}{1+M} \le r(\theta) \le 1$$

Theorem (Jones)

There is a constant M>0 such that for any simply connected domain $\Omega\subseteq\mathbb{R}^2$ with $\mathscr{H}^1(\partial\Omega)<\infty$, there exists a finite length curve Γ , such that

$$\Omega \setminus \Gamma = \bigcup_{j=1}^{\infty} \Omega_j$$

where $\{\Omega_j\}_j$ is a collection of disjoint M-Lipschitz domains satisfying

$$\sum_{j=1}^{\infty} \mathscr{H}^1(\partial \Omega_j) \leq M \mathscr{H}^1(\partial \Omega)$$

Theorem (Jones)

There is a constant M>0 such that for any simply connected domain $\Omega\subseteq\mathbb{R}^2$ with $\mathscr{H}^1(\partial\Omega)<\infty$, there exists a finite length curve Γ , such that

$$\Omega \setminus \Gamma = \bigcup_{j=1}^{\infty} \Omega_j$$

where $\{\Omega_j\}_j$ is a collection of disjoint M-Lipschitz domains satisfying

$$\sum_{j=1}^{\infty} \mathscr{H}^1(\partial \Omega_j) \leq M \mathscr{H}^1(\partial \Omega)$$

Question

What about higher dimensions? Let's assume $\partial\Omega$ is *n*-UR...

Theorem (K.)

There exist constants M(n), A(n) > 0 such that if $\Omega \subseteq \mathbb{R}^{n+1}$ is a domain where $\partial \Omega$ is n-UR, then there exists a collection of M-Lipschitz domains $\{\Omega_i\}$ such that

- (i) $\Omega = \bigcup_{j=1}^{\infty} \Omega_j$,
- (ii) $\exists C(n) > 0$ such that $\forall x \in \mathbb{R}^{n+1}$, $x \in \Omega_j$ for at most C values of j,
- (iii) For any $y \in \partial \Omega$, $0 < r \le 1$,

$$\sum_{i=1}^{\infty} \mathscr{H}^{n}(\partial \Omega_{j} \cap B(y,r)) \lesssim_{n,C_{0},\theta,L} \mathscr{H}^{n}(B(y,Ar) \cap \partial \Omega).$$

Theorem (K.)

There exist constants M(n), A(n) > 0 such that if $\Omega \subseteq \mathbb{R}^{n+1}$ is a domain where $\partial \Omega$ is n-UR, then there exists a collection of M-Lipschitz domains $\{\Omega_i\}$ such that

- (i) $\Omega = \bigcup_{j=1}^{\infty} \Omega_j$,
- (ii) $\exists C(n) > 0$ such that $\forall x \in \mathbb{R}^{n+1}$, $x \in \Omega_j$ for at most C values of j,
- (iii) For any $y \in \partial \Omega$, $0 < r \le 1$,

$$\sum_{i=1}^{\infty} \mathscr{H}^{n}(\partial \Omega_{j} \cap B(y,r)) \lesssim_{n,C_{0},\theta,L} \mathscr{H}^{n}(B(y,Ar) \cap \partial \Omega).$$

Theorem (K.)

There exists $\epsilon(n)$, A(n), M(n) > 0 such that if $\partial \Omega$ is (ϵ, n) -Reifenberg flat then there exists a collection of M-Lipschitz domains $\{\Omega_i\}$ such that the conclusions of the previous theorem hold.

Our quantitative topics

- Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff measure,
- 2 Lipschitz decompositions: The existence of decompositions of domains with UR/RF boundary into a controlled number of nice pieces,
- 3 Stability of the big pieces operator under iteration,
- Quantitative rectifiability of curves: Relationships between the length of a curve and how non-flat it is at each scale and location,

3. Big Pieces

Definition (Big pieces of \mathscr{F})

Let \mathscr{F} be a class of Ahlfors n-regular subsets of a metric space X and let $E \subseteq X$. We say that $E \in \mathrm{BP}(\mathscr{F})$ if E is Ahlfors n-regular and there exists $\theta > 0$ such that for all $x \in E$ and $0 < r < \mathrm{diam}(E)$, there exists $F_{x,r} \in \mathscr{F}$ such that

$$\mathscr{H}^n(E\cap B(x,r)\cap F_{x,r})\geq \theta r^n.$$

3. Big Pieces

Definition (Big pieces of \mathscr{F})

Let \mathscr{F} be a class of Ahlfors n-regular subsets of a metric space X and let $E \subseteq X$. We say that $E \in \mathrm{BP}(\mathscr{F})$ if E is Ahlfors n-regular and there exists $\theta > 0$ such that for all $x \in E$ and $0 < r < \mathrm{diam}(E)$, there exists $F_{x,r} \in \mathscr{F}$ such that

$$\mathscr{H}^n(E\cap B(x,r)\cap F_{x,r})\geq \theta r^n.$$

Theorem (David and Semmes)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors n-regular. Then the following are equivalent

- **1** $E \in BP(LI)$, i.e., E is uniformly n-rectifiable,
- **2** $E \in \mathrm{BP}^j(\mathrm{LI})$ for $j \geq 1$,
- **3** $E \in \mathrm{BP}^j(\mathrm{LG})$ for $j \geq 2$.

Theorem (K., Schul)

Let \mathscr{F} be a class of Ahlfors n-regular sets in a metric space X. For any $j \geq 2$,

$$\mathrm{BP}^j(\mathscr{F})\subseteq\mathrm{BP}^2(\mathscr{F}).$$

Theorem (K., Schul)

Let \mathscr{F} be a class of Ahlfors n-regular sets in a metric space X. For any $j \geq 2$,

$$BP^{j}(\mathscr{F})\subseteq BP^{2}(\mathscr{F}).$$

Theorem (K., Schul)

Let $E \subseteq X$ be an Ahlfors n-regular set with $E \in \mathrm{BP}(\mathrm{BP}(\mathscr{F}))$. There exists a set $F \subseteq X$ such that

- (i) $E \subseteq F$,
- (ii) F is Ahlfors n-regular.
- (iii) $F \in BP(\mathscr{F})$.

The constants in the conclusion are quantitative with dependence on the constants in the assumptions.

Our quantitative topics

- Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff measure,
- 2 Lipschitz decompositions: The existence of decompositions of domains with UR/RF boundary into a controlled number of nice pieces,
- 3 Stability of iterating the big pieces operator,
- Quantitative rectifiability of curves: Relationships between the length of a curve and how non-flat it is at each scale and location,

4. The analyst's traveling salesman theorem

Question

When is $E \subseteq \mathbb{R}^2$ contained in a finite length curve? How long must the curve be?

4. The analyst's traveling salesman theorem

Question

When is $E \subseteq \mathbb{R}^2$ contained in a finite length curve? How long must the curve be?

4. The analyst's traveling salesman theorem

Question

When is $E \subseteq \mathbb{R}^2$ contained in a finite length curve? How long must the curve be?

Question

When is $E \subseteq \mathbb{R}^2$ contained in a finite length curve? How long must the curve be?

Theorem (Jones: \mathbb{R}^2 , Okikiolu: \mathbb{R}^n , Schul: Hilbert space)

 $E\subseteq\Gamma\subseteq\mathbb{R}^2$ with $\ell(\Gamma)<\infty$ if and only if

$$\operatorname{diam}(E) + \sum_{Q \in \mathcal{D}(\mathbb{R}^2)} \beta_E(3Q)^2 \operatorname{diam}(Q) < \infty.$$

Moreover,

$$\ell(\Gamma) \asymp \operatorname{diam}(E) + \sum_{Q \in \mathcal{D}(\mathbb{R}^2)} \beta_E(3Q)^2 \operatorname{diam}(Q)$$

Theorem (Bishop)

Let $\Gamma \subseteq \mathbb{R}^d$ be a Jordan arc. Then $\sum_{Q \in \mathcal{D}(\mathbb{R}^d)} \beta_{\Gamma}(3Q)^2 \operatorname{diam}(Q) \asymp_d \ell(\Gamma) - \operatorname{crd}(\Gamma)$.

Theorem (Bishop)

Let $\Gamma \subseteq \mathbb{R}^d$ be a Jordan arc. Then $\sum_{Q \in \mathcal{D}(\mathbb{R}^d)} \beta_{\Gamma}(3Q)^2 \operatorname{diam}(Q) \asymp_d \ell(\Gamma) - \operatorname{crd}(\Gamma)$.

Theorem (K.)

Let H be a Hilbert space and let $\Gamma \subseteq H$ be a Jordan arc. For any multiresolution family $\mathscr H$ associated to Γ with inflation factor A > 200, we have

$$\sum_{Q \in \mathcal{M}} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q) \asymp_A \ell(\Gamma) - \operatorname{crd}(\Gamma).$$

Thank You!

Thank you!

1 By the area formula, $\mathcal{H}^n|_{\Sigma}$ can be calculated by integrating $\mathscr{J}_f = \operatorname{Jac}(Df)$.

$$F(x) = (x, f(x))$$

- **1** By the area formula, $\mathcal{H}^n|_{\Sigma}$ can be calculated by integrating $\mathcal{J}_f = \operatorname{Jac}(Df)$.
- 2 This means densities correspond to averages of $\mathscr{J}_f:[0,1]^n\to\mathbb{R},\ \mathscr{J}_f\in L^\infty.$

$$F(x) = (x, f(x))$$

- **1** By the area formula, $\mathcal{H}^n|_{\Sigma}$ can be calculated by integrating $\mathcal{J}_f = \operatorname{Jac}(Df)$.
- 2 This means densities correspond to averages of $\mathscr{J}_f:[0,1]^n\to\mathbb{R},\ \mathscr{J}_f\in L^\infty.$
- **3** Changes in the averages of $\mathscr{J}_f \in L^2 \cap L^\infty$ mean large wavelet coefficients.

$$F(x) = (x, f(x))$$

- **1** By the area formula, $\mathscr{H}^n|_{\Sigma}$ can be calculated by integrating $\mathscr{J}_f = \operatorname{Jac}(Df)$.
- **2** This means densities correspond to averages of $\mathscr{J}_f:[0,1]^n\to\mathbb{R},\ \mathscr{J}_f\in L^\infty.$
- **3** Changes in the averages of $\mathscr{J}_f \in L^2 \cap L^\infty$ mean large wavelet coefficients.
- Therefore, densities cannot change too often.

$$F(x) = (x, f(x))$$

1 Let \mathcal{W} be a Whitney decomposition of Ω . Declare $Q \in \mathcal{W}$ Good if $b\beta_{\partial\Omega}(10Q) \leq \epsilon$.

1 Let \mathcal{W} be a Whitney decomposition of Ω . Declare $Q \in \mathcal{W}$ Good if $b\beta_{\partial\Omega}(10Q) \leq \epsilon$.

- **1** Let \mathcal{W} be a Whitney decomposition of Ω . Declare $Q \in \mathcal{W}$ Good if $b\beta_{\partial\Omega}(10Q) \leq \epsilon$.
- **2** For any two **Good** cubes Q, Q', if $\partial Q \cap \partial Q' \neq \emptyset$, then dissolve $\partial Q \cap \partial Q'$.

- **1** Let \mathcal{W} be a Whitney decomposition of Ω . Declare $Q \in \mathcal{W}$ Good if $b\beta_{\partial\Omega}(10Q) \leq \epsilon$.
- **2** For any two **Good** cubes Q, Q', if $\partial Q \cap \partial Q' \neq \emptyset$, then dissolve $\partial Q \cap \partial Q'$.

- **1** Let \mathcal{W} be a Whitney decomposition of Ω . Declare $Q \in \mathcal{W}$ Good if $b\beta_{\partial\Omega}(10Q) \leq \epsilon$.
- **2** For any two **Good** cubes Q, Q', if $\partial Q \cap \partial Q' \neq \emptyset$, then dissolve $\partial Q \cap \partial Q'$.
- 3 Carve up what remains into Lipschitz domains without ruining surface area estimates.

Proof of the Corollary: $E \in \mathrm{BP}^3(\mathscr{F}) \implies E \in \mathrm{BP}^2(\mathscr{F})$

$$E \in BP^{2}(\mathfrak{F})$$
 $F \in BP^{2}(\mathfrak{F})$

Proof of the Corollary: $E \in BP^3(\mathscr{F}) \implies E \in BP^2(\mathscr{F})$

$$\ell(\Gamma) - \operatorname{crd}(\Gamma) = \sum_{i=0}^{\infty} \ell(\Gamma_{i+1}) - \ell(\Gamma_i) \approx \sum_{i=0}^{\infty} \sum_{\substack{Q \in \mathscr{H} \\ \operatorname{rad}(Q) \asymp 2^{-i}}} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q)$$

$$\ell(\Gamma) - \operatorname{crd}(\Gamma) = \sum_{i=0}^{\infty} \ell(\Gamma_{i+1}) - \ell(\Gamma_i) \approx \sum_{i=0}^{\infty} \sum_{\substack{Q \in \mathscr{H} \\ \operatorname{rad}(Q) \asymp 2^{-i}}} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q)$$

$$\ell(\Gamma) - \operatorname{crd}(\Gamma) = \sum_{i=0}^{\infty} \ell(\Gamma_{i+1}) - \ell(\Gamma_i) \approx \sum_{i=0}^{\infty} \sum_{\substack{Q \in \mathcal{H} \\ \operatorname{rad}(Q) \asymp 2^{-i}}} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q)$$

$$\ell(\Gamma) - \operatorname{crd}(\Gamma) = \sum_{i=0}^{\infty} \ell(\Gamma_{i+1}) - \ell(\Gamma_i) \approx \sum_{i=0}^{\infty} \sum_{\substack{Q \in \mathscr{H} \\ \operatorname{rad}(Q) \asymp 2^{-i}}} \beta_{\Gamma}(Q)^2 \operatorname{diam}(Q)$$

For cubes with "flat arcs", we require Schul's geometric martingales combined with a new tool: Let $\rho(t) = 1 - \gamma_1'(t)$. We introduce an "excess length" measure $d\mu = \gamma_*[\rho dt]$. Notice

$$\mu(\Gamma) = \int_0^{\ell(\Gamma)} (1-\gamma_1'(t)) dt = \ell(\Gamma) - \operatorname{crd}(\Gamma).$$

