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Rectifiability

Definition (n-rectifiable sets)

We say E C X is n-rectifiable if there exists a countable collection of Lipschitz maps

f; : A; CRR" — X such that
A" (E\Uf,-(A,-)) =0

Theorem
Let E C RY satisfy #"(E) < cc. E is
n-rectifiable if and only if E has approximate

tangent n-plane Ly at 7/"-a.e. x € E. That
is, for all € > 0,

lim H"(B(x,r) N E \ Ner(Lx))
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Definition (uniform n-rectifiability)
X is uniformly n-rectifiable if it is Ahlfors n-regular, i.e., there exists Cy > 0 such that for all
x € X and 0 < r < diam(X),

Co_lr” < H"(B(x,r)) < Gor",

and X has Big Pieces of Lipschitz images of R" (BPLI), i.e., there exist L,6 > 0 such that for
all x € X and 0 < r < diam(X), there is an L-Lipschitz map f : A C B"(0,r) — X such that

H"(B(x, r) N F(A)) > 0r".




Qualitative vs Quantitative Approximate Tangents

n-Rectifiable <= *“tangent plane” a.e. on infinitesimal scales
n-UR <= ‘coarse tangent plane” at “most” scales and locations
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Qualitative vs Quantitative Approximate Tangents

n-Rectifiable <= *“tangent plane” a.e. on infinitesimal scales

n-UR <= ‘coarse tangent plane” at “most” scales and locations
bBe(B
Definition (Bilateral Beta numbers)
Let £ C RY and for any ball B define
1
B ——dy(ENB,PNB
v bBe(B) = Pnplane dlam(B)d H(ENB PN B)

Theorem (David and Semmes)

Let E C RY be Ahlfors n-regular. Then E is
n-UR iff E satisfies the BWGL. That is, for all
€ > 0, the following set is a Carleson set:

{(x,t) € E x (0,diam(E)) : bBg(x,t) > €}



Our quantitative topics

@ Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

@® Lipschitz decompositions: The existence of decompositions of domains with UR/RF
boundary into a controlled number of nice pieces,

© Stability of iterating the big pieces operator,

O Quantitative rectifiability of curves: Relationships between the length of a curve and how
non-flat it is at each scale and location,
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Theorem (Besicovitch, Mattila, Marstrand. Kircheim for E C X)

Let E C RY be 5" measurable with #"(E) < co. E is n-rectifiable if and only if for

H"-a.e. x € E,
J"(ENB(x,r))

r30 (2r)"

If E C X is n-rectifiable, then the above equation holds.
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n-UR = density ~ ¢y around “most” (x, t)
B(z,t) B(x,t) B(x,t)
B(y,r) By, r)

OOV LA,
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Definition (Weak constant density (WCD))
Let E C RY e > 0 and define

A" |e(Bly, r))
(2r)"

- Cx,t

Y(e) = {(X, t)€ E xR : 3¢ >0,

< e fory € B(x, t), rzst},

B(e) = E x RT\ 9(e).

E satisfies the WCD if %(¢) is a Carleson set for every € > 0.
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Uniformly n-rectifiable metric spaces satisfy the WCD




Our quantitative topics

@ Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

® Lipschitz decompositions: The existence of decompositions of domains with
UR/RF boundary into a controlled number of nice pieces,

© Stability of iterating the big pieces operator,

O Quantitative rectifiability of curves: Relationships between the length of a curve and how
non-flat it is at each scale and location,



2. Decompositions of domains

Definition (Whitney

decomposition)

We say that W is a Whitney
decomposition of a domain Q C R"*1
if W is a collection of closed cubes
W = {Q;}jen such that for all
QeWw,

() @=Ugqew @
(i) If Q # @', then Q and Q' have

disjoint interiors,
(i) dist(Q, Q2°) =<, diam(Q).

But Y #"(0Q) = !

Qew




Definition (Lipschitz domains)

We say that a domain Q C C is an M-Lipschitz
domain if, after a translation and dilation,

o0 = {r(e)ef9 0<6< 271'} :
and for any 60, € [0, 27],
r(6) — r(¥)| < M6 — ¢

and

—_

<r0) <1




Theorem (Jones)

There is a constant M > 0 such that for
any simply connected domain Q C R?
with #1(0Q) < oo, there exists a finite
length curve I, such that

Q\r:[jfzj
j=1

where {Q;}; is a collection of disjoint
M-Lipschitz domains satisfying

i A(09)) < MAH(0RQ)
j=1




Theorem (Jones)

There is a constant M > 0 such that for
any simply connected domain Q C R?

with 1(08) < oo, there exists a finite _(1
length curve I, such that

o\r=Jo
j=1
where {Q;}; is a collection of disjoint

M-Lipschitz domains satisfying

i A(09)) < MAH(0RQ)
j=1

4

What about higher dimensions? Let's assume 0% is n-UR... I»




Theorem (K.)

There exist constants M(n), A(n) > 0 such that if Q C R™1 js a domain where 9 is n-UR,
then there exists a collection of M-Lipschitz domains {Q;} such that

(i) @= Uf.i1 2,
(i) 3C(n) > 0 such that Vx € R, x € Q; for at most C values of j,
(iii) Foranyy € 0Q, 0 <r <1,

> (0950 By, r) Sncp H(By, Ar) N OQ).
j=1




Theorem (K.)

There exist constants M(n), A(n) > 0 such that if Q C R™1 js a domain where 9 is n-UR,
then there exists a collection of M-Lipschitz domains {Q;} such that

(i) @= Uf.i1 2,
(i) 3C(n) > 0 such that Vx € R, x € Q; for at most C values of j,
(iii) Foranyy € 0Q, 0 <r <1,

> (0950 By, r) Sncp H(By, Ar) N OQ).
j=1

There exists €(n), A(n), M(n) > 0 such that if 002 is (¢, n)-Reifenberg flat then there exists a
collection of M-Lipschitz domains {€2;} such that the conclusions of the previous theorem hold.




Our quantitative topics

@ Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

@® Lipschitz decompositions: The existence of decompositions of domains with UR/RF
boundary into a controlled number of nice pieces,

© Stability of the big pieces operator under iteration,

O Quantitative rectifiability of curves: Relationships between the length of a curve and how
non-flat it is at each scale and location,



Definition (Big pieces of .%)

Let .# be a class of Ahlfors n-regular subsets of a metric space X and let E C X. We say that
E € BP(%) if E is Ahlfors n-regular and there exists # > 0 such that for all x € E and
0 < r < diam(E), there exists Fy, € .Z such that

J"(ENB(x,r)N Fxr) > 0r".




3. Big Pieces

Definition (Big pieces of .%)

Let .7 be a class of Ahlfors n-regular subsets of a metric space X and let E C X. We say that
E € BP(%) if E is Ahlfors n-regular and there exists # > 0 such that for all x € E and

0 < r < diam(E), there exists Fy, € .Z such that

J"(ENB(x,r)N Fxr) > 0r".

Theorem (David and Semmes)

Let E C RY be Ahlfors n-regular. Then the following are equivalent
® E € BP(LI), i.e., E is uniformly n-rectifiable,
® E c BP/(LI) forj > 1,
® E c BP/(LG) forj > 2.




Theorem (K., Schul)

Let .7 be a class of Ahlfors n-regular sets in a metric space X. For any j > 2,

BP/(.7) C BP?(.%).




Theorem (K., Schul)

Let .7 be a class of Ahlfors n-regular sets in a metric space X. For any j > 2,

BP/(.%) C BP?(.%).

A\

Theorem (K., Schul)

Let E C X be an Ahlfors n-regular set with E € BP(BP(.%)). There exists a set F C X such
that

(i) ECF,
(i) F is Ahlfors n-regular.
(iii) F € BP(.7).
The constants in the conclusion are quantitative with dependence on the constants in the
assumptions.




Our quantitative topics

@ Densities in uniformly rectifiable metric spaces: Quantitative regularity of Hausdorff
measure,

@® Lipschitz decompositions: The existence of decompositions of domains with UR/RF
boundary into a controlled number of nice pieces,

© Stability of iterating the big pieces operator,

O Quantitative rectifiability of curves: Relationships between the length of a curve
and how non-flat it is at each scale and location,



4. The analyst's traveling salesman theorem

When is E C R? contained in a finite length curve? How long must the curve be?
g g
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When is E C R? contained in a finite length curve? How long must the curve be? I

Theorem (Jones: R?, Okikiolu: R", Schul
Hilbert space)

E C T CR? with {(T') < oo if and only if
diam(E) +

QeD(R?)

Z 55(30 diam(Q) < oo.

Moreover,
. . (r) =
\ 7 Pe(@) =infL g
r .

diam(E) +

> Be(3Q) diam(Q)

QeD(R?)




~(0) erd(T) ¥(((I))

Theorem (Bishop)

Let T C RY be a Jordan arc. Then > Qen(re) Ar(3Q)? diam(Q) =g /() — crd(T).




7(0) crd(T') ¥(((I))

Theorem (Bishop)
Let T C R be a Jordan arc. Then Y ocpa) Or(3Q)* diam(Q) =g () — crd(T).

\

Theorem (K.)

Let H be a Hilbert space and let ' C H be a Jordan arc. For any multiresolution family 5
associated to I with inflation factor A > 200, we have

> Br(Q)? diam(Q) =<4 £(T) — crd(T).

QeH




Thank You!

Thank you!



Theorem (David and Semmes in RY; Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all ¢ > 0 there is an L > 1 such that

for each x € X and r > 0 there exists F C B(x, r), satisfying 76,{(B(x,r)\ F) < er" and an
L-bi-Lipschitz map f : F — R".
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Theorem (David and Semmes in RY; Bate, Hyde, and Schul for metric spaces)
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Theorem (David and Semmes in RY; Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all ¢ > 0 there is an L > 1 such that

for each x € X and r > 0 there exists F C B(x, r), satisfying s (B(x,r) \ F) < er™ and an
L-bi-Lipschitz map f : F — R".
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s —
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Let f : [0,1]” — X be L-bi-Lipschitz.

@ By the area formula, J#"|x can be
calculated by integrating _#r = Jac(Df).

F) = (¢, 59)
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Let £ :[0,1]” — X be L-bi-Lipschitz.

@ By the area formula, J#"|x can be
calculated by integrating _#r = Jac(Df).

® This means densities correspond to
averages of #¢:[0,1]" = R, Zr e L™

© Changes in the averages of ¢r € [2 N[>
mean large wavelet coefficients.

O Therefore, densities cannot change too
often.
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@ Let W be a Whitney decomposition of Q. Declare @ € W Good if b3yq(10Q) < e.
@® For any two Good cubes Q, @', if 9Q NIQ’ # &, then dissolve 0Q N IQ'.
© Carve up what remains into Lipschitz domains without ruining surface area estimates.
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Proof of the Corollary: E € BP*(.%) = E € BP?*(.%)

CeBP (&)
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o) —crd(l) =

Zﬁ(r,+1 — T

o0

~D

i=0

>

QeH

rad(Q)=2~/

Br(Q)? diam(Q)




For cubes with “flat arcs”, we require Schul’s geometric martingales combined with a new
tool: Let p(t) =1 —~{(t). We introduce an “excess length” measure dp = ~,[pdt]. Notice

£(T)
u(r) = /0 (1— A4 (6))dt = ((T) — exd(T).

p=20
p=1
p=




