Uniformly rectifiable metric spaces satisfy the weak constant density condition

Jared Krandel
Department of Mathematics
Stony Brook University

March 23, 2024

Rectifiability

Definition (n-rectifiable sets)

We say $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, $n<d$, if $\mathscr{H}^{n}(E)<\infty$ and there exist a countable collection of Lipschitz maps $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
\mathscr{H}^{n}\left(E \backslash \bigcup_{i} f_{i}\left(\mathbb{R}^{n}\right)\right)=0
$$

Rectifiability

Definition (n-rectifiable sets)

We say $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, $n<d$, if $\mathscr{H}^{n}(E)<\infty$ and there exist a countable collection of Lipschitz maps $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
\mathscr{H}^{n}\left(E \backslash \bigcup_{i} f_{i}\left(\mathbb{R}^{n}\right)\right)=0
$$

Rectifiability

Definition (n-rectifiable sets)

We say $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, $n<d$, if $\mathscr{H}^{n}(E)<\infty$ and there exist a countable collection of Lipschitz maps $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
\mathscr{H}^{n}\left(E \backslash \bigcup_{i} f_{i}\left(\mathbb{R}^{n}\right)\right)=0
$$

- Give generalization of n-dimensional smooth submanifolds of \mathbb{R}^{d}.
- For \mathscr{H}^{n} almost every $x \in E$,

$$
\lim _{r \rightarrow 0} \frac{\mathscr{H}^{n}(B(x, r) \cap E)}{(2 r)^{n}}=1
$$

Rectifiability

Definition (n-rectifiable sets)

We say $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, $n<d$, if $\mathscr{H}^{n}(E)<\infty$ and there exist a countable collection of Lipschitz maps $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
\mathscr{H}^{n}\left(E \backslash \bigcup_{i} f_{i}\left(\mathbb{R}^{n}\right)\right)=0
$$

- Give generalization of n-dimensional smooth submanifolds of \mathbb{R}^{d}.
- For \mathscr{H}^{n} almost every $x \in E$,

$$
\lim _{r \rightarrow 0} \frac{\mathscr{H}^{n}(B(x, r) \cap E)}{(2 r)^{n}}=1
$$

- For $E \subseteq X$, use Lipschitz images of subsets of \mathbb{R}^{n}.

The Idea

1. If $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, then volume locally looks like \mathscr{L}^{n} on \mathbb{R}^{n} : The density of $\left.\mathscr{H}^{n}\right|_{E}$ approaches 1 .

- Only concerns infinitesimal scales.

The Idea

1. If $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, then volume locally looks like \mathscr{L}^{n} on \mathbb{R}^{n} : The density of $\left.\mathscr{H}^{n}\right|_{E}$ approaches 1 .

- Only concerns infinitesimal scales.

2. David and Semmes developed a quantitative theory of uniformly n-rectifiable subsets of \mathbb{R}^{d} and proved they satisfy the WCD: they have nearly constant density at most scales and locations.

- Keeps track of all scales and locations.

The Idea

1. If $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, then volume locally looks like \mathscr{L}^{n} on \mathbb{R}^{n} : The density of $\left.\mathscr{H}^{n}\right|_{E}$ approaches 1 .

- Only concerns infinitesimal scales.

2. David and Semmes developed a quantitative theory of uniformly n-rectifiable subsets of \mathbb{R}^{d} and proved they satisfy the WCD: they have nearly constant density at most scales and locations.

- Keeps track of all scales and locations.

3. Bate, Hyde, and Schul have given metric analogs of some of David and Semmes's major results. Does the WCD also hold for uniformly n-rectifiable metric spaces?

The Idea

1. If $E \subseteq \mathbb{R}^{d}$ is n-rectifiable, then volume locally looks like \mathscr{L}^{n} on \mathbb{R}^{n} : The density of $\left.\mathscr{H}^{n}\right|_{E}$ approaches 1 .

- Only concerns infinitesimal scales.

2. David and Semmes developed a quantitative theory of uniformly n-rectifiable subsets of \mathbb{R}^{d} and proved they satisfy the WCD: they have nearly constant density at most scales and locations.

- Keeps track of all scales and locations.

3. Bate, Hyde, and Schul have given metric analogs of some of David and Semmes's major results. Does the WCD also hold for uniformly n-rectifiable metric spaces?

Theorem (K.)

Uniformly n-rectifiable metric spaces satisfy the WCD.

Uniform n-rectifiability

Definition (uniform n-rectifiability)

We say that a set $E \subseteq \mathbb{R}^{d}$ is uniformly n-rectifiable if there exists a constant $C_{0}>0$ such that E is Ahlfors $\left(C_{0}, n\right)$-regular, i.e., for all $x \in E$ and $0<r<\operatorname{diam}(E)$,

$$
\begin{equation*}
C_{0}^{-1} r^{n} \leq \mathscr{H}^{n}(B(x, r) \cap E) \leq C_{0} r^{n} \tag{1}
\end{equation*}
$$

and E has Big Pieces of Lipschitz images of \mathbb{R}^{n} (BPLI), i.e., there exist constants $L, \theta>0$ such that for all $x \in E$ and $0<r<\operatorname{diam}(E)$, there exists an L-Lipschitz map $f: B(0, r) \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
\begin{equation*}
\mathscr{H}^{n}(B(x, r) \cap E \cap f(B(0, r))) \geq \theta r^{n} . \tag{2}
\end{equation*}
$$

Uniform n-rectifiability

Definition (uniform n-rectifiability)

We say that a set $E \subseteq \mathbb{R}^{d}$ is uniformly n-rectifiable if there exists a constant $C_{0}>0$ such that E is Ahlfors $\left(C_{0}, n\right)$-regular, i.e., for all $x \in E$ and $0<r<\operatorname{diam}(E)$,

$$
\begin{equation*}
C_{0}^{-1} r^{n} \leq \mathscr{H}^{n}(B(x, r) \cap E) \leq C_{0} r^{n} \tag{1}
\end{equation*}
$$

and E has Big Pieces of Lipschitz images of \mathbb{R}^{n} (BPLI), i.e., there exist constants $L, \theta>0$ such that for all $x \in E$ and $0<r<\operatorname{diam}(E)$, there exists an L-Lipschitz map $f: B(0, r) \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
\begin{equation*}
\mathscr{H}^{n}(B(x, r) \cap E \cap f(B(0, r))) \geq \theta r^{n} . \tag{2}
\end{equation*}
$$

David and Semmes gave many equivalent definitions in terms of geometric good/bad decomposition :

$$
\begin{aligned}
\mathscr{G} & =\left\{(x, t) \in E \times \mathbb{R}^{+}: B(x, t) \cap E \text { looks "good" }\right\} \\
\mathscr{B} & =\left\{(x, t) \in E \times \mathbb{R}^{+}: B(x, t) \cap E \text { looks "bad" }\right\} \\
& =E \times \mathbb{R}^{+} \backslash \mathscr{G},
\end{aligned}
$$

We require that \mathscr{B} be "uniformly small": \mathscr{B} is a Carleson set.

Uniform n-rectifiability

Definition (uniform n-rectifiability)

We say that a set $E \subseteq \mathbb{R}^{d}$ is uniformly n-rectifiable if there exists a constant $C_{0}>0$ such that E is Ahlfors $\left(C_{0}, n\right)$-regular, i.e., for all $x \in E$ and $0<r<\operatorname{diam}(E)$,

$$
\begin{equation*}
C_{0}^{-1} r^{n} \leq \mathscr{H}^{n}(B(x, r) \cap E) \leq C_{0} r^{n} \tag{3}
\end{equation*}
$$

and E has Big Pieces of Lipschitz images of \mathbb{R}^{n} (BPLI), i.e., there exist constants $L, \theta>0$ such that for all $x \in E$ and $0<r<\operatorname{diam}(E)$, there exists an L-Lipschitz map $f: B(0, r) \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that

$$
\mathscr{H}^{n}(B(x, r) \cap E \cap f(B(0, r))) \geq \theta r^{n} .
$$

For the WCD,

$$
\begin{aligned}
& \mathscr{G}=\left\{(x, t) \in E \times \mathbb{R}^{+}: \frac{\mathscr{H}^{n} \mid E(B(y, r))}{(2 r)^{n}} \approx \text { constant for } B(y, r) \subseteq B(x, t), r \geq \epsilon t\right\} \\
& \mathscr{B}=E \times \mathbb{R}^{+} \backslash \mathscr{G}
\end{aligned}
$$

We require that \mathscr{B} be a Carleson set.

Carleson Conditions

First, pretend $E \subseteq \mathbb{R}^{n}$. Families of balls \approx families of cubes via
$Q \longleftrightarrow\left\{(x, t): x \in Q, \frac{\ell(Q)}{2} \leq t \leq \ell(Q)\right\}$.
Definition (Carleson sets in \mathbb{R}^{n})
$\mathscr{B} \subseteq \mathcal{D}\left(\mathbb{R}^{n}\right)$ is a Carleson set if there exists a constant $C_{1}>0$ such that for all $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$,

$$
\sum_{\substack{R \subseteq Q \\ R \in \mathscr{B}}} \ell(R)^{n} \leq C_{1} \ell(Q)^{n} .
$$

Carleson Conditions

First, pretend $E \subseteq \mathbb{R}^{n}$. Families of balls \approx families of cubes via $Q \longleftrightarrow\left\{(x, t): x \in Q, \frac{\ell(Q)}{2} \leq t \leq \ell(Q)\right\}$.

Definition (Carleson sets in \mathbb{R}^{n})

$\mathscr{B} \subseteq \mathcal{D}\left(\mathbb{R}^{n}\right)$ is a Carleson set if there exists a constant $C_{1}>0$ such that for all $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$,

$$
\sum_{\substack{R \subseteq Q \\ R \in \mathscr{B}}} \ell(R)^{n} \leq C_{1} \ell(Q)^{n} .
$$

One can associate a "dyadic structure" to E that transfers this logic to general case.

The WCD

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^{d}$ be Ahlfors n-regular, let $\epsilon_{0}>0$, and define

$$
\begin{aligned}
& \mathscr{G}\left(\epsilon_{0}\right)=\left\{(x, t) \in E \times \mathbb{R}^{+} \left\lvert\, \begin{array}{l}
\exists c_{(x, t)}>0 \text { such that } \forall y \in B(x, t) \cap E, 0<r \leq t, \\
\left|\mathscr{H}^{n}(E \cap B(y, r))-c_{(x, t)} r^{n}\right| \leq \epsilon_{0} t^{n}
\end{array}\right.\right\}, \\
& \mathscr{B}\left(\epsilon_{0}\right)=E \times \mathbb{R}^{+} \backslash \mathscr{G}\left(\epsilon_{0}\right) .
\end{aligned}
$$

We say that E satisfies the weak constant density condition if $\mathscr{B}\left(\epsilon_{0}\right)$ is a Carleson set for all $\epsilon_{0}>0$.

The WCD

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^{d}$ be Ahlfors n-regular, let $\epsilon_{0}>0$, and define

$$
\begin{aligned}
& \mathscr{G}\left(\epsilon_{0}\right)=\left\{(x, t) \in E \times \mathbb{R}^{+} \left\lvert\, \begin{array}{l}
\exists c_{(x, t)}>0 \text { such that } \forall y \in B(x, t) \cap E, 0<r \leq t, \\
\left|\mathscr{H}^{n}(E \cap B(y, r))-c_{(x, t)} r^{n}\right| \leq \epsilon_{0} t^{n}
\end{array}\right.\right. \\
& \mathscr{B}\left(\epsilon_{0}\right)=E \times \mathbb{R}^{+} \backslash \mathscr{G}\left(\epsilon_{0}\right) .
\end{aligned}
$$

We say that E satisfies the weak constant density condition if $\mathscr{B}\left(\epsilon_{0}\right)$ is a Carleson set for all $\epsilon_{0}>0$.

Theorem

Let $E \subseteq \mathbb{R}^{d}$ be Ahlfors n-regular. E is uniformly n-rectifiable if and only if E satisfies the WCD.

The WCD

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^{d}$ be Ahlfors n-regular, let $\epsilon_{0}>0$, and define

$$
\begin{aligned}
& \mathscr{G}\left(\epsilon_{0}\right)=\left\{(x, t) \in E \times \mathbb{R}^{+} \left\lvert\, \begin{array}{l}
\exists c_{(x, t)}>0 \text { such that } \forall y \in B(x, t) \cap E, 0<r \leq t, \\
\left|\mathscr{H}^{n}(E \cap B(y, r))-c_{(x, t)} r^{n}\right| \leq \epsilon_{0} t^{n}
\end{array}\right.\right. \\
& \mathscr{B}\left(\epsilon_{0}\right)=E \times \mathbb{R}^{+} \backslash \mathscr{G}\left(\epsilon_{0}\right) .
\end{aligned}
$$

We say that E satisfies the weak constant density condition if $\mathscr{B}\left(\epsilon_{0}\right)$ is a Carleson set for all $\epsilon_{0}>0$.

Theorem

Let $E \subseteq \mathbb{R}^{d}$ be Ahlfors n-regular. E is uniformly n-rectifiable if and only if E satisfies the WCD.

- Forward implication + reverse implication $n=1,2, d-1$ by David and Semmes
- Reverse implication $n \neq 1,2, d-1$ by Tolsa

The WCD

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^{d}$ be Ahlfors n-regular, let $\epsilon_{0}>0$, and define

$$
\begin{aligned}
& \mathscr{G}\left(\epsilon_{0}\right)=\left\{(x, t) \in E \times \mathbb{R}^{+} \left\lvert\, \begin{array}{l}
\exists c_{(x, t)}>0 \text { such that } \forall y \in B(x, t) \cap E, 0<r \leq t, \\
\left|\mathscr{H}^{n}(E \cap B(y, r))-c_{(x, t)} r^{n}\right| \leq \epsilon_{0} t^{n}
\end{array}\right.\right. \\
& \mathscr{B}\left(\epsilon_{0}\right)=E \times \mathbb{R}^{+} \backslash \mathscr{G}\left(\epsilon_{0}\right) .
\end{aligned}
$$

We say that E satisfies the weak constant density condition if $\mathscr{B}\left(\epsilon_{0}\right)$ is a Carleson set for all $\epsilon_{0}>0$.

Theorem

Let $E \subseteq \mathbb{R}^{d}$ be Ahlfors n-regular. E is uniformly n-rectifiable if and only if E satisfies the WCD.

- Forward implication + reverse implication $n=1,2, d-1$ by David and Semmes
- Reverse implication $n \neq 1,2, d-1$ by Tolsa

Theorem (K.)

Proof of the WCD: Good balls

Left: Flat now and on all future scales. Center and right: flat now but not on future scales.

Proof of the WCD: Good balls

David and Semmes identify bad balls by noticing that their measures are asymmetric and using boundedness of singular integral operators.

Bi-Lip images

Theorem (David and Semmes in $\mathbb{R}^{d} ;$ Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all $\epsilon>0$ there is an $L \geq 1$ such that for each $x \in X$ and $r>0$ there exists $F \subseteq B(x, r)$, satisfying $\mathscr{H}_{X}^{n}(B(x, r) \backslash F) \leq \epsilon r^{n}$ and an L-bi-Lipschitz map $f: F \rightarrow \mathbb{R}^{n}$.

Bi-Lip images

Theorem (David and Semmes in \mathbb{R}^{d}; Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all $\epsilon>0$ there is an $L \geq 1$ such that for each $x \in X$ and $r>0$ there exists $F \subseteq B(x, r)$, satisfying $\mathscr{H}_{X}^{n}(B(x, r) \backslash F) \leq \epsilon r^{n}$ and an L-bi-Lipschitz map $f: F \rightarrow \mathbb{R}^{n}$.

Find symmetry inside bi-Lipschitz images rather than ambient space.

Lipschitz graphs, area formula

Let $F(x)=(x, f(x))$ and $\Gamma=\left\{F(x): x \in \mathbb{R}^{n}\right\}$. Then,

$$
\begin{aligned}
\mathscr{H}^{n}(\Gamma \cap B) & =\int_{F^{-1}(B)} \sqrt{1+|\nabla f|^{2}} \\
& \approx\left(\omega_{n} f_{F^{-1}(B)} \sqrt{1+|\nabla f|^{2}}\right) \cdot r^{n} \\
& \approx\left(\omega_{n} f_{F^{-1}(B)} \mathscr{J}(|D F|)\right) \cdot r^{n}
\end{aligned}
$$

Lipschitz graphs, area formula

Let $F(x)=(x, f(x))$ and $\Gamma=\left\{F(x): x \in \mathbb{R}^{n}\right\}$. Then,

So, it suffices to show $f_{B^{\prime}} \mathscr{J}(|D F|)$ is nearly constant among "largish" B^{\prime}.

Metric differentiability, Area formula

Definition (Metric derivative, Jacobian)
Let $f: \mathbb{R}^{n} \rightarrow X$ be L-Lipschitz. We say a seminorm on $\mathbb{R}^{n}|D f|(x)$ is a metric derivative of f at x if

$$
\lim _{y, z \rightarrow x} \frac{d(f(y), f(z))-|D f|(x)(y-z) \mid}{|y-x|+|z-x|}=0 .
$$

We also have a jacobian $\mathscr{J}_{f}(x)=\frac{\mathscr{H}_{\mid f(| | x)}^{n}(B(0,1))}{\mathscr{L}^{n}(B(0,1))}$ and area formula.

Metric differentiability, Area formula

Definition (Metric derivative, Jacobian)

Let $f: \mathbb{R}^{n} \rightarrow X$ be L-Lipschitz. We say a seminorm on $\mathbb{R}^{n}|D f|(x)$ is a metric derivative of f at x if

$$
\lim _{y, z \rightarrow x} \frac{d(f(y), f(z))-|D f|(x)(y-z) \mid}{|y-x|+|z-x|}=0
$$

We also have a jacobian $\mathscr{J}_{f}(x)=\frac{\mathscr{H}_{|D f|(x)}^{n}(B(0,1))}{\mathscr{L}^{n}(B(0,1))}$ and area formula.

Theorem (Kircheim; Azzam, Schul)

Let $f: \mathbb{R}^{n} \rightarrow X$ be an L-Lipschitz function. f has a metric derivative at \mathscr{L}^{n} a.e. $x \in \mathbb{R}^{n}$. For $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$, set

$$
\left.\operatorname{md}_{f}(Q)=\inf _{\|\cdot\|} \sup _{x, y \in Q} \frac{1}{\ell(Q)} \right\rvert\, d(f(x), f(y))-\|x-y\| \|
$$

The set $\mathscr{B}=\left\{Q \in \mathcal{D}: \operatorname{md}_{f}(Q)>\delta\right\}$ is a Carleson set for any $\delta>0$.

Harmonic analysis

Definition

For $h \in L^{2}\left(\mathbb{R}^{n}\right), Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ define

$$
\Delta_{Q} h(x)= \begin{cases}f_{P} h(z) d z-f_{Q} h(z) d z & \text { if } x \in P \in \mathcal{D}_{1}(Q) \\ 0 & \text { otherwise }\end{cases}
$$

We have $h=\sum_{Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)} \Delta_{Q} h$ orthogonally. Define

$$
\Delta_{k}^{h}(Q)^{2}=\sum_{R \in \mathcal{D}_{j}(Q), j \leq k}\left\|\Delta_{R} h\right\|_{2}^{2}
$$

Harmonic analysis

Definition

For $h \in L^{2}\left(\mathbb{R}^{n}\right)$, define

$$
\Delta_{Q} h(x)= \begin{cases}f_{P} h(z) d z-f_{Q} h(z) d z & \text { if } x \in P \in \mathcal{D}_{1}(Q) \\ 0 & \text { otherwise }\end{cases}
$$

We have $h=\sum_{Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)} \Delta_{Q} h$ orthogonally. Define

$$
\Delta_{k}^{h}(Q)=\sum_{R \in \mathcal{D}_{j}(Q), j \leq k}\left\|\Delta_{R} h\right\|_{2}^{2}
$$

Harmonic analysis

Definition

For $h \in L^{2}\left(\mathbb{R}^{n}\right)$, define

$$
\Delta_{Q} h(x)= \begin{cases}f_{P} h(z) d z-f_{Q} h(z) d z & \text { if } x \in P \in \mathcal{D}_{1}(Q) \\ 0 & \text { otherwise }\end{cases}
$$

We have $h=\sum_{Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)} \Delta_{Q} h$ orthogonally so $\|h\|_{2}=\sum_{Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)}\left\|\Delta_{Q} h\right\|_{2}^{2}$. Define

$$
\Delta_{k}^{h}(Q)^{2}=\sum_{R \in \mathcal{D}_{j}(Q), j \leq k}\left\|\Delta_{R} h\right\|_{2}^{2}
$$

Controlling L² mean oscillation

Lemma

There exist $k(M, \epsilon, L) \in \mathbb{N}$ and $\delta(M, \epsilon, L)>0$ such that the following holds:
Let $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ and $h \in L^{2}\left(\mathbb{R}^{n}\right)$ with $h \geq 0$ and $\|h\|_{2} \leq M$. If $\Delta_{k}^{h}(Q)^{2} \leq \delta \ell(Q)^{n}$, then for any normed ball L bi-Lipschitz to $B(0, \ell(Q))$, we have

$$
\left|f_{B} h-f_{Q} h\right| \leq \epsilon\left|f_{Q} h\right| .
$$

Proof of the lemma

Lemma

$$
h \in L^{2},\|h\|_{2} \leq M, \Delta_{k(M, \epsilon, L)}^{h}(Q)^{2} \leq \delta(M, \epsilon, L) \ell(Q)^{n} \Longrightarrow\left|f_{B} h-f_{Q} h\right| \leq \epsilon\left|f_{Q} h\right| \text { for all } B \in \mathcal{B}_{L}(Q) .
$$

Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence $h_{j} \in L^{2}\left(Q_{0}\right), Q_{0}=[0,1]^{n}$ with normed balls $B_{j} \subseteq Q_{0}$ such that
(i) $\left\|h_{j}\right\|_{2} \leq M$,
(ii) $\Delta_{j}^{h_{j}}\left(Q_{0}\right) \leq \frac{1}{j}$,
(iii) $\left|f_{B_{j}} h_{j}-f_{Q} h_{j}\right|>\epsilon\left|f_{Q} h_{j}\right|$

Proof of the lemma

Lemma

$h \in L^{2},\|h\|_{2} \leq M, \Delta_{k(M, \epsilon, L)}^{h}(Q)^{2} \leq \delta(M, \epsilon, L) \ell(Q)^{n} \Longrightarrow\left|f_{B} h-f_{Q} h\right| \leq \epsilon\left|f_{Q} h\right|$ for all $B \in \mathcal{B}_{L}(Q)$.
Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence $h_{j} \in L^{2}\left(Q_{0}\right), Q_{0}=[0,1]^{n}$ with normed balls $B_{j} \subseteq Q_{0}$ such that
(i) $\left\|h_{j}\right\|_{2} \leq M$,
(ii) $\Delta_{j}^{h_{j}}\left(Q_{0}\right) \leq \frac{1}{j}$,
(iii) $\left|f_{B_{j}} h_{j}-f_{Q} h_{j}\right|>\epsilon\left|f_{Q} h_{j}\right|$

By compactness and (i), we can assume $h_{j} \rightharpoonup h \in L^{2}\left(Q_{0}\right)$ and $B_{j} \rightarrow B \in \mathcal{B}_{L}(Q)$. Furthermore, we can use (ii) to show that $\Delta_{Q} h=0$ for all $Q \subseteq Q_{0}$ so that $h=c \in \mathbb{R}$.

Proof of the lemma

Lemma

$h \in L^{2},\|h\|_{2} \leq M, \Delta_{k(M, \epsilon, L)}^{h}(Q)^{2} \leq \delta(M, \epsilon, L) \ell(Q)^{n} \Longrightarrow\left|f_{B} h-f_{Q} h\right| \leq \epsilon\left|f_{Q} h\right|$ for all $B \in \mathcal{B}_{L}(Q)$.
Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence $h_{j} \in L^{2}\left(Q_{0}\right), Q_{0}=[0,1]^{n}$ with normed balls $B_{j} \subseteq Q_{0}$ such that
(i) $\left\|h_{j}\right\|_{2} \leq M$,
(ii) $\Delta_{j}^{h_{j}}\left(Q_{0}\right) \leq \frac{1}{j}$,
(iii) $\left|f_{B_{j}} h_{j}-f_{Q} h_{j}\right|>\epsilon\left|f_{Q} h_{j}\right|$

By compactness and (i), we can assume $h_{j} \rightharpoonup h \in L^{2}\left(Q_{0}\right)$ and $B_{j} \rightarrow B \in \mathcal{B}_{L}(Q)$. Furthermore, we can use (ii) to show that $\Delta_{Q} h=0$ for all $Q \subseteq Q_{0}$ so that $h=c \in \mathbb{R}$. Again, using weak convergence we can show

$$
\lim _{j}\left|f_{B_{j}} h_{j}-f_{Q_{0}} h\right|=0
$$

contradicting (iii) for large j.

Controlling L² mean oscillation

Lemma

There exist $k(M, \epsilon, L) \in \mathbb{N}$ and $\delta(M, \epsilon, L)>0$ such that the following holds: Let $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ and $h \in L^{2}\left(\mathbb{R}^{n}\right)$ with $h \geq 0$ and $\|h\|_{2} \leq M$. If $\Delta_{k}^{h}(Q)^{2} \leq \delta \ell(Q)^{n}$, then for any normed ball L bi-Lipschitz to $B(0, \ell(Q))$, we have

$$
\left|f_{B} h-f_{Q} h\right| \leq \epsilon\left|f_{Q} h\right| .
$$

Controlling L² mean oscillation

Lemma

There exist $k(M, \epsilon, L) \in \mathbb{N}$ and $\delta(M, \epsilon, L)>0$ such that the following holds: Let $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ and $h \in L^{2}\left(\mathbb{R}^{n}\right)$ with $h \geq 0$ and $\|h\|_{2} \leq M$. If $\Delta_{k}^{h}(Q)^{2} \leq \delta \ell(Q)^{n}$, then for any normed ball L bi-Lipschitz to $B(0, \ell(Q))$, we have

$$
\left|f_{B} h-f_{Q} h\right| \leq \epsilon\left|f_{Q} h\right| .
$$

Corollary

Let $f:[0,1]^{n} \rightarrow \Sigma$ be L-bi-Lipschitz. Let

$$
\mathscr{G}=\left\{Q \in \mathcal{D}\left(\mathbb{R}^{n}\right):\left|f_{B} \mathscr{J}_{f}-f_{Q} \mathscr{J}_{f}\right| \leq \epsilon\left|f_{Q} \mathscr{J}_{f}\right| \text { for all } B \in \mathcal{B}_{L}(Q)\right\} .
$$

$\mathscr{B}=\mathcal{D}\left(\mathbb{R}^{n}\right) \backslash \mathscr{G}$ is Carleson.

Controlling density oscillation

Let $c_{Q}=f_{Q} \mathscr{J}_{f}$. Then for Carleson almost every $Q \in \mathcal{D}$ and all $B \in \mathcal{B}_{L}(Q)$,

$$
\begin{aligned}
\left|f_{B} \mathscr{J}_{f}-f_{Q} \mathscr{J}_{f}\right| \leq \epsilon\left|f_{Q} \mathscr{J}_{f}\right| & \Longleftrightarrow\left|\int_{B} \mathscr{J}_{f}-\mathscr{L}(B)\left(f_{Q} \mathscr{J}_{f}\right)\right| \leq \epsilon\left(f_{Q} \mathscr{J}_{f}\right) \mathscr{L}(B) \\
& \Longleftrightarrow\left|\mathscr{H}^{n}(f(B))-c_{Q} \mathscr{L}(B)\right| \leq \epsilon c_{Q} \mathscr{L}(B) .
\end{aligned}
$$

Controlling density oscillation

Let $c_{Q}=f_{Q} \mathscr{J}_{f}$. Then for Carleson almost every $Q \in \mathcal{D}$ and all $B \in \mathcal{B}_{L}(Q)$,

$$
\begin{aligned}
\left|f_{B} \mathscr{J}_{f}-f_{Q} \mathscr{J}_{f}\right| \leq \epsilon\left|f_{Q} \mathscr{J}_{f}\right| & \Longleftrightarrow\left|\int_{B} \mathscr{J}_{f}-\mathscr{L}(B)\left(f_{Q} \mathscr{J}_{f}\right)\right| \leq \epsilon\left(f_{Q} \mathscr{J}_{f}\right) \mathscr{L}(B) \\
& \Longleftrightarrow\left|\mathscr{H}^{n}(f(B))-c_{Q} \mathscr{L}(B)\right| \leq \epsilon c_{Q} \mathscr{L}(B) .
\end{aligned}
$$

Assuming $B=B_{\|\cdot\|_{Q}}(y, r)$, we get $\mathscr{L}(B)=c_{\|\cdot\|_{Q}} r^{n}$ so that

$$
\left|\mathscr{H}^{n}\left(f\left(B_{\|\cdot\|_{Q}}(y, r)\right)\right)-c_{Q} c_{\|\cdot\|_{Q}} r^{n}\right| \leq \epsilon_{0} \ell(Q)^{n}
$$

Controlling density oscillation

Let $c_{Q}=f_{Q} \mathscr{J}_{f}$. Then for Carleson almost every $Q \in \mathcal{D}$ and all $B \in \mathcal{B}_{L}(Q)$,

$$
\begin{aligned}
\left|f_{B} \mathscr{J}_{f}-f_{Q} \mathscr{J}_{f}\right| \leq \epsilon\left|f_{Q} \mathscr{J}_{f}\right| & \Longleftrightarrow\left|\int_{B} \mathscr{J}_{f}-\mathscr{L}(B)\left(f_{Q} \mathscr{J}_{f}\right)\right| \leq \epsilon\left(f_{Q} \mathscr{J}_{f}\right) \mathscr{L}(B) \\
& \Longleftrightarrow\left|\mathscr{H}^{n}(f(B))-c_{Q} \mathscr{L}(B)\right| \leq \epsilon c_{Q} \mathscr{L}(B) .
\end{aligned}
$$

Assuming $B=B_{\|\cdot\|_{Q}}(y, r)$, we get $\mathscr{L}(B)=c_{\|\cdot\|_{Q}} r^{n}$ so that

$$
\left|\mathscr{H}^{n}\left(f\left(B_{\|\cdot\|_{Q}}(y, r)\right)\right)-c_{Q} c_{\|\cdot\|_{Q}} r^{n}\right| \leq \epsilon_{0} \ell(Q)^{n} .
$$

Lemma

Let $f:[0,1]^{n} \rightarrow \Sigma$ be L-bi-Lipschitz. Then for Carleson almost every $Q \in \mathcal{D}$ there exists a norm $\|\cdot\|_{Q}$ achieving $\operatorname{md}_{f}(Q) \leq \delta$ and

$$
\left|\mathscr{H}^{n}\left(f\left(B_{\|\cdot\|_{Q}}(y, r)\right)\right)-a_{Q} r^{n}\right| \leq \epsilon_{0} \ell(Q)^{n}
$$

for all $B_{\|\cdot\|_{Q}}(y, r) \in \mathcal{B}_{L}(Q)$ where $a_{Q}=c_{Q} C_{\|\cdot\|_{Q}}$.

Proof the WCD for bi-Lipschitz images

Proof:

- Let $x \in \Sigma, 0<t<\operatorname{diam}(\Sigma), y \in B(x, t), 0<r<t$.

Proof the WCD for bi-Lipschitz images

Proof:

- Let $x \in \Sigma, 0<t<\operatorname{diam}(\Sigma), y \in B(x, t), 0<r<t$.
- We need to find $a_{x, t}>0$ such that $\left|\mathscr{H}^{n}(B(y, r))-a_{x, t} r^{n}\right| \leq \epsilon_{0} t^{n}$ independent of y, r.

Proof the WCD for bi-Lipschitz images

Proof:

- Let $x \in \Sigma, 0<t<\operatorname{diam}(\Sigma), y \in B(x, t), 0<r<t$.
- We need to find $a_{x, t}>0$ such that $\left|\mathscr{H}^{n}(B(y, r))-a_{x, t} r^{n}\right| \leq \epsilon_{0} t^{n}$ independent of y, r.
- WLOG, assume there is $Q_{x, t} \in \mathcal{D}$ satisfying
(i) $B(x, 3 t) \subseteq f\left(Q_{x, t}\right)$ and $\ell\left(Q_{x, t}\right) \asymp_{L} t$
(ii) $\operatorname{md}_{f}\left(Q_{x, t}\right) \leq \delta$
(iii) $\Delta_{k}^{\mathscr{F}_{f}}(Q)^{2} \leq \delta \ell(Q)^{n}$

Proof the WCD for bi-Lipschitz images

Proof:

- Let $x \in \Sigma, 0<t<\operatorname{diam}(\Sigma), y \in B(x, t), 0<r<t$.
- We need to find $a_{x, t}>0$ such that $\left|\mathscr{H}^{n}(B(y, r))-a_{x, t} r^{n}\right| \leq \epsilon_{0} t^{n}$ independent of y, r.
- WLOG, assume there is $Q_{x, t} \in \mathcal{D}$ satisfying
(i) $B(x, 3 t) \subseteq f\left(Q_{x, t}\right)$ and $\ell\left(Q_{x, t}\right) \asymp_{L} t$
(ii) $\operatorname{md}_{f}\left(Q_{x, t}\right) \leq \delta$
(iii) $\Delta_{k}^{\mathscr{F}_{f}}(Q)^{2} \leq \delta \ell(Q)^{n}$
- $\operatorname{md}_{f}\left(Q_{x, t}\right) \leq \delta \Longrightarrow f^{-1}(B(y, r)) \approx B_{\|\cdot\| Q_{x, t}}\left(f^{-1}(y), r\right)$. Define $a_{x, t}=a_{Q_{x, t}}=c_{Q_{x, t}} c_{\|\cdot\|_{Q_{x, t}}}$.

Proof the WCD for bi-Lipschitz images

Proof:

- Let $x \in \Sigma, 0<t<\operatorname{diam}(\Sigma), y \in B(x, t), 0<r<t$.
- We need to find $a_{x, t}>0$ such that $\left|\mathscr{H}^{n}(B(y, r))-a_{x, t} r^{n}\right| \leq \epsilon_{0} t^{n}$ independent of y, r.
- WLOG, assume there is $Q_{x, t} \in \mathcal{D}$ satisfying
(i) $B(x, 3 t) \subseteq f\left(Q_{x, t}\right)$ and $\ell\left(Q_{x, t}\right) \asymp_{L} t$
(ii) $\operatorname{md}_{f}\left(Q_{x, t}\right) \leq \delta$
(iii) $\Delta_{k}^{\mathscr{F}_{f}}(Q)^{2} \leq \delta \ell(Q)^{n}$
- $\operatorname{md}_{f}\left(Q_{x, t}\right) \leq \delta \Longrightarrow f^{-1}(B(y, r)) \approx B_{\|\cdot\|_{Q_{x, t}}}\left(f^{-1}(y), r\right)$. Define $a_{x, t}=a_{Q_{x, t}}=c_{Q_{x, t}} c_{\|\cdot\|_{Q_{x, t}}}$.
- The lemma implies

$$
\begin{aligned}
& \mid \mathscr{H}^{n}(B(y, r))- a_{x, t} r^{n} \mid \\
& \leq\left|\mathscr{H}^{n}\left(f\left(f^{-1}(B(y, r))\right)\right)-\mathscr{H}^{n}\left(f\left(B_{\|\cdot\|_{Q}}\left(f^{-1}(y), r\right)\right)\right)\right| \\
&+\left|\mathscr{H}^{n}\left(f\left(B_{\|\cdot\|_{Q}}\left(f^{-1}(y), r\right)\right)\right)-a_{Q} r^{n}\right| \\
& \lesssim \epsilon \ell(Q)^{n} \lesssim \epsilon t^{n} .
\end{aligned}
$$

Thank you!

Thank you!

