Uniformly rectifiable metric spaces satisfy the weak constant density condition

Jared Krandel

Department of Mathematics Stony Brook University

March 23, 2024

Definition (*n*-rectifiable sets)

We say $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, n < d, if $\mathscr{H}^n(E) < \infty$ and there exist a countable collection of Lipschitz maps $f_i : \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathscr{H}^n\left(E\setminus\bigcup_i f_i(\mathbb{R}^n)\right)=0$$

Definition (*n*-rectifiable sets)

We say $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, n < d, if $\mathscr{H}^n(E) < \infty$ and there exist a countable collection of Lipschitz maps $f_i : \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathscr{H}^n\left(E\setminus\bigcup_i f_i(\mathbb{R}^n)\right)=0$$

Definition (*n*-rectifiable sets)

We say $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, n < d, if $\mathscr{H}^n(E) < \infty$ and there exist a countable collection of Lipschitz maps $f_i : \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathscr{H}^n\left(E\setminus\bigcup_i f_i(\mathbb{R}^n)\right)=0$$

- Give generalization of *n*-dimensional smooth submanifolds of \mathbb{R}^d .
- For \mathcal{H}^n almost every $x \in E$,

$$\lim_{r\to 0}\frac{\mathscr{H}^n(B(x,r)\cap E)}{(2r)^n}=1.$$

Definition (*n*-rectifiable sets)

We say $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, n < d, if $\mathscr{H}^n(E) < \infty$ and there exist a countable collection of Lipschitz maps $f_i : \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathscr{H}^n\left(E\setminus\bigcup_i f_i(\mathbb{R}^n)\right)=0$$

- Give generalization of *n*-dimensional smooth submanifolds of \mathbb{R}^d .
- For \mathcal{H}^n almost every $x \in E$,

$$\lim_{r\to 0}\frac{\mathscr{H}^n(B(x,r)\cap E)}{(2r)^n}=1.$$

• For $E \subseteq X$, use Lipschitz images of *subsets* of \mathbb{R}^n .

- 1. If $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, then volume locally looks like \mathscr{L}^n on \mathbb{R}^n : The density of $\mathscr{H}^n|_E$ approaches 1.
 - Only concerns infinitesimal scales.

- 1. If $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, then volume locally looks like \mathscr{L}^n on \mathbb{R}^n : The density of $\mathscr{H}^n|_E$ approaches 1.
 - Only concerns infinitesimal scales.
- 2. David and Semmes developed a quantitative theory of *uniformly n-rectifiable* subsets of \mathbb{R}^d and proved they satisfy the WCD: they have *nearly constant* density at *most scales and locations*.
 - Keeps track of all scales and locations.

- 1. If $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, then volume locally looks like \mathscr{L}^n on \mathbb{R}^n : The density of $\mathscr{H}^n|_E$ approaches 1.
 - Only concerns infinitesimal scales.
- 2. David and Semmes developed a quantitative theory of *uniformly n-rectifiable* subsets of \mathbb{R}^d and proved they satisfy the WCD: they have *nearly constant* density at *most scales and locations*.
 - Keeps track of all scales and locations.
- 3. Bate, Hyde, and Schul have given metric analogs of some of David and Semmes's major results. Does the WCD also hold for uniformly *n*-rectifiable metric spaces?

- 1. If $E \subseteq \mathbb{R}^d$ is *n*-rectifiable, then volume locally looks like \mathscr{L}^n on \mathbb{R}^n : The density of $\mathscr{H}^n|_E$ approaches 1.
 - Only concerns infinitesimal scales.
- 2. David and Semmes developed a quantitative theory of *uniformly n-rectifiable* subsets of \mathbb{R}^d and proved they satisfy the WCD: they have *nearly constant* density at *most scales and locations*.
 - Keeps track of all scales and locations.
- 3. Bate, Hyde, and Schul have given metric analogs of some of David and Semmes's major results. Does the WCD also hold for uniformly *n*-rectifiable metric spaces?

Theorem (K.)

Uniformly n-rectifiable metric spaces satisfy the WCD.

Uniform *n*-rectifiability

Definition (uniform *n*-rectifiability)

We say that a set $E \subseteq \mathbb{R}^d$ is uniformly n-rectifiable if there exists a constant $C_0 > 0$ such that E is Ahlfors (C_0, n) -regular, i.e., for all $x \in E$ and $0 < r < \operatorname{diam}(E)$,

$$C_0^{-1}r^n \le \mathscr{H}^n(B(x,r) \cap E) \le C_0r^n, \tag{1}$$

and E has $Big\ Pieces\ of\ Lipschitz\ images\ of\ \mathbb{R}^n$ (BPLI), i.e., there exist constants $L, \theta > 0$ such that for all $x \in E$ and $0 < r < \operatorname{diam}(E)$, there exists an L-Lipschitz map $f: B(0,r) \subseteq \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathscr{H}^{n}(B(x,r)\cap E\cap f(B(0,r)))\geq \theta r^{n}.$$
 (2)

Uniform *n*-rectifiability

Definition (uniform *n*-rectifiability)

We say that a set $E \subseteq \mathbb{R}^d$ is uniformly n-rectifiable if there exists a constant $C_0 > 0$ such that E is Ahlfors (C_0, n) -regular, i.e., for all $x \in E$ and $0 < r < \operatorname{diam}(E)$,

$$C_0^{-1}r^n \le \mathscr{H}^n(B(x,r) \cap E) \le C_0r^n, \tag{1}$$

and *E* has *Big Pieces of Lipschitz images of* \mathbb{R}^n (BPLI), i.e., there exist constants $L, \theta > 0$ such that for all $x \in E$ and $0 < r < \operatorname{diam}(E)$, there exists an *L*-Lipschitz map $f : B(0, r) \subseteq \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathscr{H}^{n}(B(x,r)\cap E\cap f(B(0,r)))\geq \theta r^{n}.$$
 (2)

David and Semmes gave many equivalent definitions in terms of geometric good/bad decomposition :

$$\mathscr{G} = \{(x,t) \in E \times \mathbb{R}^+ : B(x,t) \cap E \text{ looks "good"}\},$$

 $\mathscr{B} = \{(x,t) \in E \times \mathbb{R}^+ : B(x,t) \cap E \text{ looks "bad"}\},$
 $= E \times \mathbb{R}^+ \setminus \mathscr{G},$

We require that \mathscr{B} be "uniformly small": \mathscr{B} is a Carleson set.

Uniform *n*-rectifiability

Definition (uniform *n*-rectifiability)

We say that a set $E \subseteq \mathbb{R}^d$ is uniformly n-rectifiable if there exists a constant $C_0 > 0$ such that E is Ahlfors (C_0, n) -regular, i.e., for all $x \in E$ and $0 < r < \operatorname{diam}(E)$,

$$C_0^{-1}r^n \le \mathcal{H}^n(B(x,r) \cap E) \le C_0r^n, \tag{3}$$

and E has $Big\ Pieces\ of\ Lipschitz\ images\ of\ \mathbb{R}^n$ (BPLI), i.e., there exist constants $L, \theta > 0$ such that for all $x \in E$ and $0 < r < \operatorname{diam}(E)$, there exists an L-Lipschitz map $f : B(0, r) \subseteq \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathscr{H}^{n}(B(x,r)\cap E\cap f(B(0,r)))\geq \theta r^{n}. \tag{4}$$

For the WCD,

$$\mathscr{G} = \left\{ (x,t) \in E \times \mathbb{R}^+ : \frac{\mathscr{H}^n|_E(B(y,r))}{(2r)^n} \approx \text{constant for } B(y,r) \subseteq B(x,t), r \ge \epsilon t \right\},$$

$$\mathscr{B} = E \times \mathbb{R}^+ \setminus \mathscr{G}.$$

We require that \mathcal{B} be a Carleson set.

Carleson Conditions

First, pretend $E \subseteq \mathbb{R}^n$. Families of balls \approx families of cubes via $Q \longleftrightarrow \{(x,t): x \in Q, \frac{\ell(Q)}{2} \le t \le \ell(Q)\}$.

Definition (Carleson sets in \mathbb{R}^n)

 $\mathscr{B}\subseteq \mathcal{D}(\mathbb{R}^n)$ is a *Carleson set* if there exists a constant $C_1>0$ such that for all $Q\in \mathcal{D}(\mathbb{R}^n)$,

$$\sum_{\substack{R\subseteq Q\\R\in\mathscr{B}}}\ell(R)^n\leq C_1\ell(Q)^n.$$

Carleson Conditions

First, pretend $E \subseteq \mathbb{R}^n$. Families of balls \approx families of cubes via

$$Q \longleftrightarrow \{(x,t): x \in Q, \ \frac{\ell(Q)}{2} \le t \le \ell(Q)\}.$$

Definition (Carleson sets in \mathbb{R}^n)

 $\mathscr{B}\subseteq \mathcal{D}(\mathbb{R}^n)$ is a *Carleson set* if there exists a constant $C_1>0$ such that for all $Q\in \mathcal{D}(\mathbb{R}^n)$,

$$\sum_{\substack{R\subseteq Q\\R\in\mathscr{B}}}\ell(R)^n\leq C_1\ell(Q)^n.$$

One can associate a "dyadic structure" to E that transfers this logic to general case.

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors *n*-regular, let $\epsilon_0 > 0$, and define

$$\mathscr{G}(\epsilon_0) = \left\{ (x,t) \in E \times \mathbb{R}^+ \middle| \begin{array}{l} \exists c_{(x,t)} > 0 \text{ such that } \forall y \in B(x,t) \cap E, \ 0 < r \le t, \\ |\mathscr{H}^n(E \cap B(y,r)) - c_{(x,t)}r^n| \le \epsilon_0 t^n \end{array} \right\},$$

$$\mathscr{B}(\epsilon_0) = E \times \mathbb{R}^+ \setminus \mathscr{G}(\epsilon_0).$$

We say that E satisfies the weak constant density condition if $\mathscr{B}(\epsilon_0)$ is a Carleson set for all $\epsilon_0 > 0$.

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors *n*-regular, let $\epsilon_0 > 0$, and define

$$\mathscr{G}(\epsilon_0) = \left\{ (x,t) \in E \times \mathbb{R}^+ \middle| \begin{array}{l} \exists c_{(x,t)} > 0 \text{ such that } \forall y \in B(x,t) \cap E, \ 0 < r \le t, \\ |\mathscr{H}^n(E \cap B(y,r)) - c_{(x,t)}r^n| \le \epsilon_0 t^n \end{array} \right\},$$

$$\mathscr{B}(\epsilon_0) = E \times \mathbb{R}^+ \setminus \mathscr{G}(\epsilon_0).$$

We say that E satisfies the weak constant density condition if $\mathscr{B}(\epsilon_0)$ is a Carleson set for all $\epsilon_0 > 0$.

Theorem

Let $E \subseteq \mathbb{R}^d$ be Ahlfors n-regular. E is uniformly n-rectifiable if and only if E satisfies the WCD.

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors *n*-regular, let $\epsilon_0 > 0$, and define

$$\mathscr{G}(\epsilon_0) = \left\{ (x,t) \in E \times \mathbb{R}^+ \middle| \begin{array}{l} \exists c_{(x,t)} > 0 \text{ such that } \forall y \in B(x,t) \cap E, \ 0 < r \le t, \\ |\mathscr{H}^n(E \cap B(y,r)) - c_{(x,t)}r^n| \le \epsilon_0 t^n \end{array} \right\},$$

$$\mathscr{B}(\epsilon_0) = E \times \mathbb{R}^+ \setminus \mathscr{G}(\epsilon_0).$$

We say that E satisfies the weak constant density condition if $\mathscr{B}(\epsilon_0)$ is a Carleson set for all $\epsilon_0>0$.

Theorem

Let $E \subseteq \mathbb{R}^d$ be Ahlfors n-regular. E is uniformly n-rectifiable if and only if E satisfies the WCD.

- Forward implication + reverse implication n = 1, 2, d 1 by David and Semmes
- Reverse implication $n \neq 1, 2, d-1$ by Tolsa

Definition (Weak constant density condition)

Let $E \subseteq \mathbb{R}^d$ be Ahlfors *n*-regular, let $\epsilon_0 > 0$, and define

$$\mathscr{G}(\epsilon_0) = \left\{ (x,t) \in E \times \mathbb{R}^+ \middle| \begin{array}{l} \exists c_{(x,t)} > 0 \text{ such that } \forall y \in B(x,t) \cap E, \ 0 < r \leq t, \\ |\mathscr{H}^n(E \cap B(y,r)) - c_{(x,t)}r^n| \leq \epsilon_0 t^n \end{array} \right\},$$
 $\mathscr{B}(\epsilon_0) = E \times \mathbb{R}^+ \setminus \mathscr{G}(\epsilon_0).$

We say that E satisfies the weak constant density condition if $\mathscr{B}(\epsilon_0)$ is a Carleson set for all $\epsilon_0 > 0$.

Theorem

Let $E \subseteq \mathbb{R}^d$ be Ahlfors n-regular. E is uniformly n-rectifiable if and only if E satisfies the WCD.

- Forward implication + reverse implication n = 1, 2, d 1 by David and Semmes
- Reverse implication $n \neq 1, 2, d-1$ by Tolsa

Theorem (K.)

Uniformly n-rectifiable metric spaces satisfy the WCD.

Proof of the WCD: Good balls

Left: Flat now and on all future scales.

Center and right: flat now but not on future scales.

Proof of the WCD: Good balls

David and Semmes identify bad balls by noticing that their measures are asymmetric and using boundedness of singular integral operators. $$_{20/44}$$

Bi-Lip images

Theorem (David and Semmes in \mathbb{R}^d ; Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all $\epsilon > 0$ there is an $L \ge 1$ such that for each $x \in X$ and r > 0 there exists $F \subseteq B(x,r)$, satisfying $\mathscr{H}_X^n(B(x,r) \setminus F) \le \epsilon r^n$ and an L-bi-Lipschitz map $f : F \to \mathbb{R}^n$.

Bi-Lip images

Theorem (David and Semmes in \mathbb{R}^d ; Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all $\epsilon > 0$ there is an $L \ge 1$ such that for each $x \in X$ and r > 0 there exists $F \subseteq B(x,r)$, satisfying $\mathscr{H}_X^n(B(x,r) \setminus F) \le \epsilon r^n$ and an L-bi-Lipschitz map $f : F \to \mathbb{R}^n$.

Find symmetry inside bi-Lipschitz images rather than ambient space.

Lipschitz graphs, area formula

Let F(x) = (x, f(x)) and $\Gamma = \{F(x) : x \in \mathbb{R}^n\}$. Then,

$$\mathcal{H}^{n}(\Gamma \cap B) = \int_{F^{-1}(B)} \sqrt{1 + |\nabla f|^{2}}$$

$$\approx \left(\omega_{n} \oint_{F^{-1}(B)} \sqrt{1 + |\nabla f|^{2}}\right) \cdot r^{n}$$

$$\approx \left(\omega_{n} \oint_{F^{-1}(B)} \mathcal{J}(|DF|)\right) \cdot r^{n}.$$

Lipschitz graphs, area formula

Let F(x) = (x, f(x)) and $\Gamma = \{F(x) : x \in \mathbb{R}^n\}$. Then,

$$\mathscr{H}^{n}(\Gamma \cap B) = \int_{F^{-1}(B)} \sqrt{1 + |\nabla f|^{2}}$$

$$\approx \left(\omega_{n} \oint_{F^{-1}(B)} \sqrt{1 + |\nabla f|^{2}}\right) \cdot r^{n}$$

$$\approx \left(\omega_{n} \oint_{F^{-1}(B)} \mathscr{J}(|DF|)\right) \cdot r^{n}.$$

 $|\mathcal{H}^n(\Gamma \cap B) - c_{x,t}r^n| \approx |(\omega_n f_{B'} \mathcal{J}(|DF|)) - c_{x,t}| \cdot r^n$. So, it suffices to show $f_{B'} \mathcal{J}(|DF|)$ is nearly constant among "largish" B'.

Metric differentiability, Area formula

Definition (Metric derivative, Jacobian)

Let $f: \mathbb{R}^n \to X$ be *L*-Lipschitz. We say a seminorm on $\mathbb{R}^n |Df|(x)$ is a *metric derivative* of f at x if

$$\lim_{y,z\to x} \frac{d(f(y),f(z)) - |Df|(x)(y-z)|}{|y-x| + |z-x|} = 0.$$

We also have a jacobian $\mathscr{J}_f(x)=\frac{\mathscr{H}^n_{|Df|(x)}(B(0,1))}{\mathscr{L}^n(B(0,1))}$ and area formula.

Metric differentiability, Area formula

Definition (Metric derivative, Jacobian)

Let $f: \mathbb{R}^n \to X$ be *L*-Lipschitz. We say a seminorm on $\mathbb{R}^n |Df|(x)$ is a *metric derivative* of f at x if

$$\lim_{y,z\to x} \frac{d(f(y),f(z)) - |Df|(x)(y-z)|}{|y-x| + |z-x|} = 0.$$

We also have a jacobian $\mathscr{J}_f(x) = \frac{\mathscr{H}^n_{|Df|(x)}(B(0,1))}{\mathscr{L}^n(B(0,1))}$ and area formula.

Theorem (Kircheim; Azzam, Schul)

Let $f: \mathbb{R}^n \to X$ be an L-Lipschitz function. f has a metric derivative at \mathscr{L}^n a.e. $x \in \mathbb{R}^n$. For $Q \in \mathcal{D}(\mathbb{R}^n)$, set

$$\mathrm{md}_f(Q) = \inf_{\|\cdot\|_{X,Y \in \Omega}} \sup_{\ell \in Q} \frac{1}{\ell(Q)} |d(f(x), f(y)) - \|x - y\||.$$

The set $\mathscr{B} = \{Q \in \mathcal{D} : \mathrm{md}_f(Q) > \delta\}$ is a Carleson set for any $\delta > 0$.

Harmonic analysis

Definition

For $h \in L^2(\mathbb{R}^n)$, $Q \in \mathcal{D}(\mathbb{R}^n)$ define

$$\Delta_Q h(x) = egin{cases} f_P \ h(z) dz - f_Q \ h(z) dz & ext{if } x \in P \in \mathcal{D}_1(Q), \\ 0 & ext{otherwise} \end{cases}$$

We have $h = \sum_{Q \in \mathcal{D}(\mathbb{R}^n)} \Delta_Q h$ orthogonally. Define

$$\Delta_k^h(Q)^2 = \sum_{R \in \mathcal{D}_i(Q), \ j \leq k} \|\Delta_R h\|_2^2$$

Harmonic analysis

Definition

For $h \in L^2(\mathbb{R}^n)$, define

$$\Delta_Q h(x) = egin{cases} f_P \ h(z) dz - f_Q \ h(z) dz & ext{if } x \in P \in \mathcal{D}_1(Q), \\ 0 & ext{otherwise} \end{cases}$$

We have $h = \sum_{Q \in \mathcal{D}(\mathbb{R}^n)} \Delta_Q h$ orthogonally. Define

$$\Delta_k^h(Q) = \sum_{R \in \mathcal{D}_j(Q), \ j \leq k} \|\Delta_R h\|_2^2$$

Harmonic analysis

Definition

For $h \in L^2(\mathbb{R}^n)$, define

$$\Delta_Q h(x) = egin{cases} f_P \ h(z) dz - f_Q \ h(z) dz & ext{if } x \in P \in \mathcal{D}_1(Q), \\ 0 & ext{otherwise} \end{cases}$$

We have $h = \sum_{Q \in \mathcal{D}(\mathbb{R}^n)} \Delta_Q h$ orthogonally so $||h||_2 = \sum_{Q \in \mathcal{D}(\mathbb{R}^n)} ||\Delta_Q h||_2^2$. Define

$$\Delta_k^h(Q)^2 = \sum_{R \in \mathcal{D}_i(Q), \ j \leq k} \|\Delta_R h\|_2^2.$$

Controlling L^2 mean oscillation

Lemma

There exist $k(M, \epsilon, L) \in \mathbb{N}$ and $\delta(M, \epsilon, L) > 0$ such that the following holds: Let $Q \in \mathcal{D}(\mathbb{R}^n)$ and $h \in L^2(\mathbb{R}^n)$ with $h \geq 0$ and $\|h\|_2 \leq M$. If $\Delta_k^h(Q)^2 \leq \delta \ell(Q)^n$, then for any normed ball L bi-Lipschitz to $B(0, \ell(Q))$, we have

$$\left| \oint_{B} h - \oint_{Q} h \right| \leq \epsilon \left| \oint_{Q} h \right|.$$

Proof of the lemma

Lemma

$$h \in L^2, \ \|h\|_2 \leq M, \ \Delta^h_{k(M,\epsilon,L)}(Q)^2 \leq \delta(M,\epsilon,L)\ell(Q)^n \implies \left|f_B \, h - f_Q \, h\right| \leq \epsilon \left|f_Q \, h\right| \ \text{for all } B \in \mathcal{B}_L(Q).$$

Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence $h_j \in L^2(Q_0)$, $Q_0 = [0,1]^n$ with normed balls $B_i \subseteq Q_0$ such that

- (i) $||h_j||_2 \leq M$,
- (ii) $\Delta_j^{h_j}(Q_0) \leq \frac{1}{j}$,
- (iii) $\left| f_{B_j} h_j f_Q h_j \right| > \epsilon \left| f_Q h_j \right|$

Proof of the lemma

Lemma

$$h \in L^2, \ \|h\|_2 \leq M, \ \Delta^h_{k(M,\epsilon,L)}(Q)^2 \leq \delta(M,\epsilon,L)\ell(Q)^n \implies \left|f_B \, h - f_Q \, h\right| \leq \epsilon \left|f_Q \, h\right| \ \text{for all } B \in \mathcal{B}_L(Q).$$

Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence $h_j \in L^2(Q_0)$, $Q_0 = [0,1]^n$ with normed balls $B_i \subseteq Q_0$ such that

- (i) $||h_j||_2 \leq M$,
- (ii) $\Delta_j^{h_j}(Q_0) \leq \frac{1}{j}$,
- (iii) $\left| f_{B_j} h_j f_Q h_j \right| > \epsilon \left| f_Q h_j \right|$

By compactness and (i), we can assume $h_j \rightharpoonup h \in L^2(Q_0)$ and $B_j \to B \in \mathcal{B}_L(Q)$. Furthermore, we can use (ii) to show that $\Delta_Q h = 0$ for all $Q \subseteq Q_0$ so that $h = c \in \mathbb{R}$.

Proof of the lemma

Lemma

$$h \in L^2, \ \|h\|_2 \leq M, \ \Delta^h_{k(M,\epsilon,L)}(Q)^2 \leq \delta(M,\epsilon,L)\ell(Q)^n \implies \left|f_B \ h - f_Q \ h\right| \leq \epsilon \left|f_Q \ h\right| \ \text{for all } B \in \mathcal{B}_L(Q).$$

Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence $h_j \in L^2(Q_0)$, $Q_0 = [0,1]^n$ with normed balls $B_i \subseteq Q_0$ such that

- (i) $||h_i||_2 < M$,
- (ii) $\Delta_i^{h_j}(Q_0) \leq \frac{1}{i}$,
- (iii) $\left| f_{B_i} h_j f_Q h_j \right| > \epsilon \left| f_Q h_j \right|$

By compactness and (i), we can assume $h_j \rightharpoonup h \in L^2(Q_0)$ and $B_j \to B \in \mathcal{B}_L(Q)$. Furthermore, we can use (ii) to show that $\Delta_Q h = 0$ for all $Q \subseteq Q_0$ so that $h = c \in \mathbb{R}$. Again, using weak convergence we can show

$$\lim_{j} \left| f_{B_{j}} h_{j} - f_{Q_{0}} h \right| = 0$$

contradicting (iii) for large j.

Controlling L^2 mean oscillation

Lemma

There exist $k(M, \epsilon, L) \in \mathbb{N}$ and $\delta(M, \epsilon, L) > 0$ such that the following holds:

Let $Q \in \mathcal{D}(\mathbb{R}^n)$ and $h \in L^2(\mathbb{R}^n)$ with $h \geq 0$ and $||h||_2 \leq M$. If $\Delta_k^h(Q)^2 \leq \delta \ell(Q)^n$, then for any normed ball L bi-Lipschitz to $B(0,\ell(Q))$, we have

$$\left| \oint_{B} h - \oint_{Q} h \right| \leq \epsilon \left| \oint_{Q} h \right|.$$

Controlling L^2 mean oscillation

Lemma

There exist $k(M, \epsilon, L) \in \mathbb{N}$ and $\delta(M, \epsilon, L) > 0$ such that the following holds:

Let $Q \in \mathcal{D}(\mathbb{R}^n)$ and $h \in L^2(\mathbb{R}^n)$ with $h \geq 0$ and $||h||_2 \leq M$. If $\Delta_k^h(Q)^2 \leq \delta \ell(Q)^n$, then for any normed ball L bi-Lipschitz to $B(0,\ell(Q))$, we have

$$\left| f_{B} h - f_{Q} h \right| \le \epsilon \left| f_{Q} h \right|.$$

Corollary

Let $f:[0,1]^n \rightarrow \Sigma$ be L-bi-Lipschitz. Let

$$\mathscr{G} = \left\{ Q \in \mathcal{D}(\mathbb{R}^n) : \left| \oint_{B} \mathscr{J}_f - \oint_{Q} \mathscr{J}_f \right| \le \epsilon \left| \oint_{Q} \mathscr{J}_f \right| \text{ for all } B \in \mathcal{B}_L(Q) \right\}.$$

$$\mathscr{B} = \mathcal{D}(\mathbb{R}^n) \setminus \mathscr{G}$$
 is Carleson.

Controlling density oscillation

Let $c_Q = \oint_Q \mathscr{J}_f$. Then for Carleson almost every $Q \in \mathcal{D}$ and all $B \in \mathcal{B}_L(Q)$,

$$\begin{split} \left| \int_{B} \mathcal{J}_{f} - \int_{Q} \mathcal{J}_{f} \right| &\leq \epsilon \left| \int_{Q} \mathcal{J}_{f} \right| \iff \left| \int_{B} \mathcal{J}_{f} - \mathcal{L}(B) \left(\int_{Q} \mathcal{J}_{f} \right) \right| \leq \epsilon \left(\int_{Q} \mathcal{J}_{f} \right) \mathcal{L}(B) \\ &\iff \left| \mathcal{H}^{n}(f(B)) - c_{Q} \mathcal{L}(B) \right| \leq \epsilon c_{Q} \mathcal{L}(B). \end{split}$$

Controlling density oscillation

Let $c_Q=\int_Q\mathscr{J}_f$. Then for Carleson almost every $Q\in\mathcal{D}$ and all $B\in\mathcal{B}_L(Q)$,

$$\left| \int_{B} \mathcal{J}_{f} - \int_{Q} \mathcal{J}_{f} \right| \leq \epsilon \left| \int_{Q} \mathcal{J}_{f} \right| \iff \left| \int_{B} \mathcal{J}_{f} - \mathcal{L}(B) \left(\int_{Q} \mathcal{J}_{f} \right) \right| \leq \epsilon \left(\int_{Q} \mathcal{J}_{f} \right) \mathcal{L}(B)$$
$$\iff \left| \mathcal{H}^{n}(f(B)) - c_{Q} \mathcal{L}(B) \right| \leq \epsilon c_{Q} \mathcal{L}(B).$$

Assuming $B=B_{\|\cdot\|_Q}(y,r)$, we get $\mathscr{L}(B)=c_{\|\cdot\|_Q}r^n$ so that

$$\left|\mathscr{H}^n(f(B_{\|\cdot\|_Q}(y,r)))-c_Qc_{\|\cdot\|_Q}r^n\right|\leq \epsilon_0\ell(Q)^n.$$

Controlling density oscillation

Let $c_Q = \oint_{\mathcal{O}} \mathscr{J}_f$. Then for Carleson almost every $Q \in \mathcal{D}$ and all $B \in \mathcal{B}_L(Q)$,

$$\left| \int_{B} \mathcal{J}_{f} - \int_{Q} \mathcal{J}_{f} \right| \leq \epsilon \left| \int_{Q} \mathcal{J}_{f} \right| \iff \left| \int_{B} \mathcal{J}_{f} - \mathcal{L}(B) \left(\int_{Q} \mathcal{J}_{f} \right) \right| \leq \epsilon \left(\int_{Q} \mathcal{J}_{f} \right) \mathcal{L}(B)$$
$$\iff \left| \mathcal{H}^{n}(f(B)) - c_{Q} \mathcal{L}(B) \right| \leq \epsilon c_{Q} \mathcal{L}(B).$$

Assuming $B = B_{\|\cdot\|_{\mathcal{O}}}(y, r)$, we get $\mathscr{L}(B) = c_{\|\cdot\|_{\mathcal{O}}} r^n$ so that

$$\left|\mathscr{H}^n(f(B_{\|\cdot\|_Q}(y,r)))-c_Qc_{\|\cdot\|_Q}r^n\right|\leq \epsilon_0\ell(Q)^n.$$

Lemma

Let $f:[0,1]^n \to \Sigma$ be L-bi-Lipschitz. Then for Carleson almost every $Q \in \mathcal{D}$ there exists a norm $\|\cdot\|_Q$ achieving $\mathrm{md}_f(Q) \leq \delta$ and

$$\left|\mathscr{H}^n(f(B_{\|\cdot\|_Q}(y,r)))-a_Qr^n\right|\leq \epsilon_0\ell(Q)^n$$

for all $B_{\|\cdot\|_Q}(y,r) \in \mathcal{B}_L(Q)$ where $a_Q = c_Q c_{\|\cdot\|_Q}$.

Proof:

• Let $x \in \Sigma$, $0 < t < \operatorname{diam}(\Sigma)$, $y \in B(x, t)$, 0 < r < t.

- Let $x \in \Sigma$, $0 < t < \operatorname{diam}(\Sigma)$, $y \in B(x, t)$, 0 < r < t.
- We need to find $a_{x,t} > 0$ such that $|\mathcal{H}^n(B(y,r)) a_{x,t}r^n| \le \epsilon_0 t^n$ independent of y, r.

- Let $x \in \Sigma$, $0 < t < \operatorname{diam}(\Sigma)$, $y \in B(x, t)$, 0 < r < t.
- We need to find $a_{x,t} > 0$ such that $|\mathcal{H}^n(B(y,r)) a_{x,t}r^n| \le \epsilon_0 t^n$ independent of y, r.
- ullet WLOG, assume there is $\mathit{Q}_{\mathsf{x},t} \in \mathcal{D}$ satisfying
 - (i) $B(x,3t) \subseteq f(Q_{x,t})$ and $\ell(Q_{x,t}) \asymp_L t$
 - (ii) $\operatorname{md}_f(Q_{x,t}) \leq \delta$
 - (iii) $\Delta_k^{\mathscr{J}_f}(Q)^2 \leq \delta \ell(Q)^n$

- Let $x \in \Sigma$, $0 < t < \operatorname{diam}(\Sigma)$, $y \in B(x, t)$, 0 < r < t.
- We need to find $a_{x,t} > 0$ such that $|\mathcal{H}^n(B(y,r)) a_{x,t}r^n| \le \epsilon_0 t^n$ independent of y, r.
- ullet WLOG, assume there is $Q_{\mathsf{x},t} \in \mathcal{D}$ satisfying
 - (i) $B(x,3t) \subseteq f(Q_{x,t})$ and $\ell(Q_{x,t}) \asymp_L t$
 - (ii) $\operatorname{md}_f(Q_{x,t}) \leq \delta$
 - (iii) $\Delta_k^{\mathscr{J}_f}(Q)^2 \leq \delta \ell(Q)^n$
- $\operatorname{md}_f(Q_{x,t}) \leq \delta \Longrightarrow f^{-1}(B(y,r)) \approx B_{\|\cdot\|_{Q_{x,t}}}(f^{-1}(y),r)$. Define $a_{x,t} = a_{Q_{x,t}} = c_{Q_{x,t}} c_{\|\cdot\|_{Q_{x,t}}}$.

- Let $x \in \Sigma$, $0 < t < \operatorname{diam}(\Sigma)$, $y \in B(x, t)$, 0 < r < t.
- We need to find $a_{x,t} > 0$ such that $|\mathcal{H}^n(B(y,r)) a_{x,t}r^n| \le \epsilon_0 t^n$ independent of y, r.
- WLOG, assume there is $Q_{x,t} \in \mathcal{D}$ satisfying
 - (i) $B(x,3t) \subseteq f(Q_{x,t})$ and $\ell(Q_{x,t}) \asymp_L t$
 - (ii) $\operatorname{md}_f(Q_{x,t}) \leq \delta$
 - (iii) $\Delta_k^{\mathscr{J}_f}(Q)^2 \leq \delta \ell(Q)^n$
- $\operatorname{md}_f(Q_{x,t}) \leq \delta \Longrightarrow f^{-1}(B(y,r)) \approx B_{\|\cdot\|_{Q_{x,t}}}(f^{-1}(y),r)$. Define $a_{x,t} = a_{Q_{x,t}} c_{\|\cdot\|_{Q_{x,t}}}$.
- The lemma implies

$$\begin{aligned} |\mathscr{H}^{n}(B(y,r)) - a_{x,t}r^{n}| \\ &\leq |\mathscr{H}^{n}(f(f^{-1}(B(y,r)))) - \mathscr{H}^{n}(f(B_{\|\cdot\|_{Q}}(f^{-1}(y),r)))| \\ &+ |\mathscr{H}^{n}(f(B_{\|\cdot\|_{Q}}(f^{-1}(y),r))) - a_{Q}r^{n}| \\ &\lesssim \epsilon \ell(Q)^{n} \lesssim \epsilon t^{n}. \end{aligned}$$

Thank you!

Thank you!