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Rectifiability

Definition (n-rectifiable sets)

We say E C RY is n-rectifiable, n < d, if A"(E) < oo and there exist a countable collection of Lipschitz maps

fi i R" — R? such that
A" <E \U f,-(R")) =0

2/44



Rectifiability

Definition (n-rectifiable sets)

We say E C RY is n-rectifiable, n < d, if A"(E) < oo and there exist a countable collection of Lipschitz maps

fi i R" — R? such that
A" <E \U f,-(R")) =0

e

3/44



Rectifiability

Definition (n-rectifiable sets)

We say E C RY is n-rectifiable, n < d, if A"(E) < oo and there exist a countable collection of Lipschitz maps

fi i R" — R? such that
" <E \ U ﬁ(Rn)) —

|
o

® Give generalization of n-dimensional smooth
submanifolds of R9. R

® For " almost every x € E,

. H"(B(x,r)NE) _
STy

e
Fri
e
+
¥
.
Fri-

e

444



Rectifiability

Definition (n-rectifiable sets)

We say E C RY is n-rectifiable, n < d, if A"(E) < oo and there exist a countable collection of Lipschitz maps

fi i R" — R? such that
" <E \ U ﬁ(Rn)) —

|
o

® Give generalization of n-dimensional smooth
submanifolds of R9. R

® For " almost every x € E,

. H"(B(x,r)NE) _
STy

e
Fri
e
+
¥
.
Fri-

e

® For E C X, use Lipschitz images of subsets of R".
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The ldea

1. If E C RY is n-rectifiable, then volume locally looks like .#" on R”: The density of 2" |g
approaches 1.

® Only concerns infinitesimal scales.
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The ldea

1. If E C RY is n-rectifiable, then volume locally looks like .#" on R”: The density of 2" |g

approaches 1.
® Only concerns infinitesimal scales.

2. David and Semmes developed a quantitative theory of uniformly n-rectifiable subsets of
RY and proved they satisfy the WCD: they have nearly constant density at most scales
and locations.

® Keeps track of all scales and locations.

3. Bate, Hyde, and Schul have given metric analogs of some of David and Semmes’s major

results. Does the WCD also hold for uniformly n-rectifiable metric spaces?

Uniformly n-rectifiable metric spaces satisfy the WCD. \
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Uniform n-rectifiability

Definition (uniform n-rectifiability)

We say that a set E C R? is uniformly n-rectifiable if there exists a constant Co > 0 such that E is Ahlfors
(Co, n)-regular, i.e., for all x € E and 0 < r < diam(E),

G 'r" < A (B(x,r) N E) < Gor”, (1)

and E has Big Pieces of Lipschitz images of R" (BPLI), i.e., there exist constants L, 6 > 0 such that for all
x € E and 0 < r < diam(E), there exists an L-Lipschitz map f : B(0,r) C R" — R such that

HA"(B(x,r)NENF(B(0,r))) > or". 2)
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Uniform n-rectifiability

Definition (uniform n-rectifiability)

We say that a set E C R? is uniformly n-rectifiable if there exists a constant Co > 0 such that E is Ahlfors
(Co, n)-regular, i.e., for all x € E and 0 < r < diam(E),

G 'r" < A (B(x,r) N E) < Gor”, (1)

and E has Big Pieces of Lipschitz images of R" (BPLI), i.e., there exist constants L, 6 > 0 such that for all
x € E and 0 < r < diam(E), there exists an L-Lipschitz map f : B(0,r) C R" — R such that

HA"(B(x,r)NENF(B(0,r))) > or". 2)

David and Semmes gave many equivalent definitions in terms of geometric good/bad decomposition :
4 ={(x,t) € ExR" : B(x,t) N E looks "good"},
B ={(x,t) € ExR" : B(x,t)NE looks “bad"},
=ExR"\ 9,

We require that % be “uniformly small”’: % is a Carleson set.
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Uniform n-rectifiability

Definition (uniform n-rectifiability)

We say that a set E C R? is uniformly n-rectifiable if there exists a constant Cp > 0 such that E is Ahlfors
(Co, n)-regular, i.e., for all x € E and 0 < r < diam(E),

Colr" < A" (B(x,r) N E) < Gor", (3)

and E has Big Pieces of Lipschitz images of R" (BPLI), i.e., there exist constants L,6 > 0 such that for all
x € E and 0 < r < diam(E), there exists an L-Lipschitz map f : B(0,r) C R” — R? such that

H"(B(x,r)NENF(B(O,r))) > 0r". (4)

For the WCD,

. A7Ne(By,r))
' (2r)

~ constant for B(y, r) C B(x,t),r > et} ,

We require that % be a Carleson set.
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Carleson Conditions

First, pretend E C R”. Families of balls ~
families of cubes via

Q+— {(x,t): x € Q, LORY: <UQ)}.

Definition (Carleson sets in R”)

% C D(R") is a Carleson set if there exists a
constant C; > 0 such that for all Q € D(R"),

> UR)" < GUQ)".

RCQ
Re%#
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Carleson Conditions

First, pretend E C R”. Families of balls ~
families of cubes via

Q+— {(x,t):xe @, L2 <t<uQ)}.

Definition (Carleson sets in R”)

% C D(R") is a Carleson set if there exists a
constant C; > 0 such that for all Q € D(R"),

3" UR)" < GU(Q)™
RCQ
Re%A

\
N

One can associate a “dyadic structure” to E Ds(@Q)
that transfers this logic to general case.

\
L\
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The WCD

Definition (Weak constant density condition)

Let E C RY be Ahlfors n-regular, let o > 0, and define

G (o) = {(x, t) € ExR"

3¢5y > 0 such that Vy € B(x,t)NE, 0 <r < t,
|#"(ENB(y,r)) — cpnr"| < et” ’

%(60) =E x R+ \g(EO)

We say that E satisfies the weak constant density condition if %(eo) is a Carleson set for all ¢g > 0.
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Let E C RY be Ahlfors n-regular. E is uniformly n-rectifiable if and only if E satisfies the WCD.
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Uniformly n-rectifiable metric spaces satisfy the WCD.




Proof of the WCD: Good balls

B(z,t) B(z,t) B(z,t)

Left: Flat now and on all future scales.

Center and right: flat now but not on future scales.
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Proof of the WCD: Good balls

B(z,t) B(z,t) B(z,t)

By, r) B(y,r)
AN (By,r)NE) =2r A (B(y,r) N E) ~ 6r AN B(y,r)NE)~2(1+¢€)r

David and Semmes identify bad balls by noticing that their measures are asymmetric and using

boundedness of singular integral operators. 20/44



Bi-Lip images

Theorem (David and Semmes in R?: Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all ¢ > 0 there is an L > 1 such that for each x € X
and r > 0 there exists F C B(x, r), satisfying ¢ (B(x,r)\ F) < er" and an L-bi-Lipschitz map f : F — R".

B(z,t) B(z,t)
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Bi-Lip images

Theorem (David and Semmes in RY; Bate, Hyde, and Schul for metric spaces)

Let X be uniformly n-rectifiable. X has VBPBI, i.e., for all ¢ > 0 there is an L > 1 such that for each x € X
and r > 0 there exists F C B(x, r), satisfying 75 (B(x,r)\ F) < er" and an L-bi-Lipschitz map f : F — R".

B(z,t) B(z,t)

Find symmetry inside bi-Lipschitz images rather than ambient space.
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Lipschitz graphs, area formula

Let F(x) = (x,f(x)) and I = {F(x) : x € R"}. Then,
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Lipschitz graphs, area formula

Let F(x) = (x,f(x)) and I = {F(x) : x € R"}. Then,

%””FOB:/ \/1+|VF]2

( ) i) V£

B ~ | wn A1+ |VF2|-r"
( ]{“%B) | ‘)

| ~ (w,, /(\DF|)> o,
1 F-1(B)

L|A(T0 B) = cxar”| = |(wn fgr F (IDFI)) = cxe| - 1"
So, it suffices to show fg, #(|DF|) is nearly constant
among “largish” B'.

|
|
' p-1(B
|
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Metric differentiability, Area formula

Definition (Metric derivative, Jacobian)

Let f : R"” — X be L-Lipschitz. We say a seminorm on R" |Df|(x)
is a metric derivative of f at x if

i (), F(2) — IDFCI = )| _
vy =X+ lz—x |

Zbr 10 (BO:1))

Zn(Bo)  and area formula.

We also have a jacobian _#f(x) =
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Metric differentiability, Area formula

Definition (Metric derivative, Jacobian)

B(z,t) C X
Let f : R"” — X be L-Lipschitz. We say a seminorm on R" |Df|(x)
is a metric derivative of f at x if 2,
o d(F(). F(2)) ~ IDFGIY ~ ) _
yiz=x ly = x|+ 1z — x| e
We also have a jacobian _#Z¢(x) = %W At 216 ffemela.
f—l
Theorem (Kircheim; Azzam, Schul) 7
Let f : R" — X be an L-Lipschitz function. f has a metric )
derivative at " a.e. x € R". For Q € D(R"), set \
\
. 1
mdr(Q) = inf sup 7 [d(F(x), F(») — lIx = ¥l ‘
H‘Hx,yEQé(Q) '71(' )
The set ={Q € D : md¢(Q) > &} is a Carleson set for any

6>0. 26/ 44




Harmonic analysis

For h € L(R"), @ € D(R") define

otherwise

We have h = ZQGD(R,,) Agh orthogonally. Define

AKQP = > llarhl;

RED;(Q), i<k

\/\/\/
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Harmonic analysis

Definition

For h € L?(R"), define

Doh(x) = fp h(z)dz — fQ h(z)dz if x € P € D1(Q),
0 otherwise
We have h = ZQeD(Rn) Aqh orthogonally. Define

AWQ) = > llAghlz

RED;(Q), j<k

AQII,
/\h

/
N /

NIBRV
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Harmonic analysis

Definition

For h € L?(R"), define

Agh(x) = fp h(z)dz — fQ h(z)dz if x € P € D1(Q),
0 otherwise
We have h = 3" o pn Aoh orthogonally so [|All2 = 3 e pan |Aqhl3. Define

AKQ?= > llaehlE

RED;(Q), j<k

AQ]I,
ﬁ@ '
AQI}L

/
o~ / Ao, h

NS
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Controlling L?> mean oscillation

Lemma

There exist k(M,e, L) € N and §(M, e, L) > 0 such that the following holds:
Let Q € D(R") and h € L2(R") with h > 0 and ||h||2 < M. If AI(Q)? < §¢(Q)", then for any
normed ball L bi-Lipschitz to B(0,¢(Q)), we have
£
Q

][Bh_]éh'ge
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Proof of the lemma

he L2, bl < M, Al (Q) < 6(M,e, DUQ)" —> ‘fB h—f, h‘ <e ‘fQ h’ for all B € BL(Q).

Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence h; € [*(Qo), Qo = [0,1]" with
normed balls B; C @ such that

(i) lIhjlla < M,
(ii) A’.’f(Q )< 1,

i) [fo -

fohy
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Proof of the lemma

he L2, |Ihll: < M, Al e(Q) < 3(M, e, )UQ)Y = |fyh— foh| < ¢|fqh| for all B € B(Q).

Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence h; € [*(Qo), Qo = [0,1]" with
normed balls B; C @ such that

(i) lIhjlla < M,
(ii) A’.’f(Q )< 1,
(i) |fs, i — fohy

By compactness and (i), we can assume h; — h € [*(Q) and B; — B € B.(Q). Furthermore, we can use (ii)
to show that Agh =0 for all @ C @ so that h=c € R.
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Proof of the lemma

he L2, |Ihll: < M, Al e(Q) < 3(M, e, )UQ)Y = |fyh— foh| < ¢|fqh| for all B € B(Q).

Proof: Suppose the lemma does not hold. After re-scaling, we get a sequence h; € [*(Qo), Qo = [0,1]" with
normed balls B; C @ such that

(i) lIhjlla < M,
(ii) A’.’f(Q )< 1,
(i) |fs, i — fohy

By compactness and (i), we can assume h; — h € [*(Q) and B; — B € B.(Q). Furthermore, we can use (ii)
to show that Agh =0 for all Q C Qo so that h = ¢ € R. Again, using weak convergence we can show

Fu—fn
B; Qo

lim =0

contradicting (iii) for large j.
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Controlling L?> mean oscillation

Lemma

There exist k(M,e,L) € N and 6(M, ¢, L) > 0 such that the following holds:
Let @ € D(R™) and h € L2(R") with h >0 and ||h|l» < M. If AR(Q)? < 54(Q)", then for any
normed ball L bi-Lipschitz to B(0,¢(Q)), we have
fﬂ.
Q

ﬁh_ﬁﬂge
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Controlling L?> mean oscillation

Lemma

There exist k(M,e,L) € N and 6(M, ¢, L) > 0 such that the following holds:
Let @ € D(R™) and h € L2(R") with h >0 and ||h|l» < M. If AR(Q)? < 54(Q)", then for any
normed ball L bi-Lipschitz to B(0,¢(Q)), we have
/ h‘ .
Q

][ h —][ h' <e
B Q
Corollary

Let f :[0,1]” — X be L-bi-Lipschitz. Let

]i/f][Q/f

<e for aIIBGBL(Q)}.

g:{QeD(Rn);

b

2B =DR")\ Y is Carleson.
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Controlling density oscillation

Let co = f, #r. Then for Carleson almost every Q € D and all B € B.(Q),
Q

Lol o] = | e (f )

> |H"(f(B)) — c@Z(B)| < ecqZ(B).

<e

—
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Controlling density oscillation

Let cg = fQ Jr. Then for Carleson almost every Q € D and all B € B.(Q),
Q

Lol o] = | e (f )

< |A#"(f(B)) — cgZ(B)| < ecq-Z(B).
Assuming B = By, (v, r), we get Z(B) = ¢, r" so that

<e <

| A" (F(Byl.1o(y, 7)) — cacyor"| < €l(Q)".
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Controlling density oscillation

Let co = f, #r. Then for Carleson almost every Q € D and all B € B.(Q),
Q

Lol o] = | e (f )

< |A#"(f(B)) — cgZ(B)| < ecq-Z(B).
Assuming B = By, (v, r), we get Z(B) = ¢, r" so that

<e <

| A" (F(Byl.1o(y, 7)) — cacyor"| < €l(Q)".

Let f : [0,1]" — X be L-bi-Lipschitz. Then for Carleson almost every Q € D there exists a norm || - || @ achieving
mds(Q) < ¢ and

| (F(Blo (v, 1)) — aar”| < ol(Q)"
for all BH-HQ(y7 I’) € BL(Q) where ag = €QC|-llg-
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Proof the WCD for bi-Lipschitz images

Proof:
o letxe X, 0<t<diam(X), y € B(x,t), 0<r<t.
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Proof the WCD for bi-Lipschitz images

Proof:
o letxe X, 0<t<diam(X), y € B(x,t), 0<r<t.
® We need to find ay; > 0 such that [52"(B(y, r)) — ax,tr"| < €ot” independent of y, r.
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Proof the WCD for bi-Lipschitz images

Proof:
o letxe X, 0<t<diam(X), y € B(x,t), 0<r<t.
® We need to find ay; > 0 such that [52"(B(y, r)) — ax,tr"| < €ot” independent of y, r.
® WLOG, assume there is Qx,; € D satisfying
(i) B(x,3t) C f(Qx,) and £(Qx,¢) =< t
(i) mde(Qx,e) <6
(i) A7(Q) < o6(Q)
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Proof the WCD for bi-Lipschitz images

Proof:

o letxe X, 0<t<diam(X), y € B(x,t), 0<r<t.
® We need to find ay; > 0 such that [52"(B(y, r)) — ax,tr"| < €ot” independent of y, r.
® WLOG, assume there is Qx,; € D satisfying

(i) B(x,3t) C f(Qx,) and £(Qx,¢) =< t

(i) mde(Qx,e) <6

(i) AF(Q) < 06(Q)
* mde(Que) <0 = By, r)) ~ By, (f1(y),r). Define

ax,t = an,t = CQx,tC”'HQX‘t'
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Proof the WCD for bi-Lipschitz images

Proof:

o letxe X, 0<t<diam(X), y € B(x,t), 0<r<t.
® We need to find ay; > 0 such that [52"(B(y, r)) — ax,tr"| < €ot” independent of y, r.
® WLOG, assume there is Qx,; € D satisfying

(i) B(x,3t) C f(Qx,) and £(Qx,¢) =< t

(i) mde(Qut) <6

(i) AL(Q) < 64(Q)"
L4 mdf(QX’t) <) = fﬁl(B(y, r)) ~ BH‘”QX,t(fil(y)’ r). Define

aX,t = an,t = CQx,tC”'HQX‘t'
® The lemma implies

(A" (B(y,r)) = ax.er”|
< [A(E(FH By, ) — " (F(By o (FH(y), )

+ 1A (F(B) o (F (), 1)) — agr

Sel(Q)" S et
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Thank you!
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